Quantcast
Channel: Física – Blog de Emilio Silvera V.
Viewing all 959 articles
Browse latest View live

Nada es eterno ni infinito

$
0
0

Lo cierto es que, nadie sabe el destino final del Universo. Sin embargo, especular…especulan todos.

“Sabiendo” que el destino irremediable de nuestro mundo, el planeta Tierra, es el de ser calcinado por una estrella gigante roja en la que se convertirá el Sol cuando agote la fusión de su combustible de hidrógeno, helio, carbono, etc, para que sus capas exteriores de materia exploten y salgan disparadas al espacio exterior formando una nebulosa planetaria, mientras que el resto de su masa se contraerá hacia su núcleo bajo su propio peso, a merced de la gravedad, convirtiéndose en una estrella enana blanca de enorme densidad y de reducido diámetro que solo sera frenada por la degeneración de los electrones al ponerse en marcha en Principio de exclusión de Pauli. Sabiendo eso, el hombre debe poner los medios para que antes de que llegue ese momento (dentro de algunos miles de millones de años), la Humanidad pueda escapar y dar el salto hacia otros mundos lejanos que, como la Tierra ahora, reúna las condiciones físicas y químicas, tenga agua corriente por estar situados en la zona habitable y tengan la atmósfera y las temperaturas adecuadas para acogerla.

Lo de saber el destino final de nuestro mundo es un decir, si antes no ocurren cosas que cambien ese destino, otros acontecimientos ahora desconocidos por nosotros y que, siendo el Universo dinámico como lo es, entra dentro de lo posible que ese futuro que vislumbramos, pudiera ser diferente. En realidad, no podemos aseguar nada cuando nos referimos al mañana.

Así podríamos ver como quedó el Sol (Nebulosa Planetaria) una vez finalizada su vida. En su centro, una enena balanca muy energética ioniza toda la nube que brilla con el fulgor de la radiación ultravioleta que la estrella central le transmite. Poco a poco, la nube se desvanecerá, y, en el centro, enfriándose con el paso de los años, se verá un objeto frío y denso. ¡El cadáver del Sol que fue!

Pero el problema no es sólo de nosotros, y se extenderá a la totalidad del universo que, aunque mucho más tarde, también está abocado a la muerte térmica, el frío absoluto si se expande para siempre como un universo abierto y eterno, o el más horroroso de los infiernos, si estamos en un universo cerrado y finito en el que un día, la fuerza de gravedad, detendrá la expansión de las galaxias que comenzarán a moverse de nuevo en sentido contrario, acercándose las unas a las otras de manera tal que el universo comenzará, con el paso del tiempo, a calentarse, hasta que finalmente se junte toda la materia-energía del universo en una enorme bola de fuego de millones de grados de temperatura, el Big Crunch. Según los datos con los que contamos, la Densidad Crítica del Universo puede ser la ideal para que se expanda para siempre.

Sistema_solar2

Las regiones del Universo, como nuestro Sistema Solar, están todas ellas regidas por las mismas leyes y fuerzas de la Naturaleza. El irreversible final está entre los dos modelos que, de todas las formas  que lo miremos, es negativo para la Humanidad (si es que para entonces aún existe). En tal situación, algunos ya están buscando la manera de escapar.

Stephen Hawking ha llegado a la conclusión de que estamos inmersos en un metaverso, esto es, que existen infinidad de universos conectados los unos a los otros. Unos tienen constantes de la naturaleza que permiten la vida igual o parecida a la nuestra, otros posibilitan formas de vida muy distintas y otros muchos no permiten ninguna clase de vida.

Este sistema de inflación-contracción auto-reproductora nos viene a decir que cuando el universo se expande (se infla) a su vez, esa burbuja crea otras burbujas que se inflan y a su vez continúan creando otras nuevas más allá de nuestro horizonte visible. Cada burbuja será un nuevo universo, o mini-universo en los que reinarán escenarios diferentes o diferentes constantes y fuerzas.

WMAP Leaving the Earth or Moon toward L2.jpg

Representación artística de WMAP. La Wilkinson Microwave Anisotropy Probe (WMAP) es una sonda de la NASA cuya misión es estudiar el cielo y medir las diferencias de temperatura que se observan en la radiación de fondo de microondas, un remanente del Big Bang.

(“Los científicos han visto pruebas de tiempo antes del Big Bang, y tal vez una verificación de la idea del universo cíclico?. Uno de los grandes físicos de nuestra época, Roger Penrose de la Universidad de Oxford, ha publicado un nuevo documento diciendo que los patrones circulares visto en el WMAP mision de datos sobre el fondo cósmico de microondas sugieren que el espacio y el tiempo tal vez no se originó en el Big Bang, sino que nuestro universo continuamente los ciclos a través de una serie de “eones”, y tenemos un eterno y cíclico cosmos.”)

Resultado de imagen de Permeabilidad del vacío

“La Física depende de distintos parámetros, desde la carga o masa del electrón hasta la permeabilidad del vacío pasando por la constante de gravitación universal. Si construir un universo fuera como cocinar usaríamos una receta de cocina. Los ingredientes que se usarían seguirían ciertos parámetros, como la composición de fuerzas y partículas, mientras que la preparación serían la cantidad de masa o la intensidad de la constante cosmológica.Sin embargo la receta del Universo no admite errores en los ingredientes. Pareciera que el Universo esta predispuesto para producir y albergar vida, pero al mínimo cambio las condiciones ya no son favorables. Así, una pequeña alteración en los valores de las constantes fundamentales haría que no se produzcan en las estrellas los elementos necesarios para la vida; más masa en el Universo y éste implosionará al poco de darse el Big Bang y no habrá dado tiempo para que se forme la vida; una constante cosmológica más intensa y el Universo se diluirá en la nada sin que se formen galaxias, estrellas y planetas.”

El escenario que describen algunos el diagramas en otras ocasiones aquí reseñado, ha sido explorado y el resultado hallado es que en cada uno de esos posibles universos, como hemos dicho ya, puede haber muchas cosas diferentes; pueden terminar con diferentes números de dimensiones espaciales o diferentes constantes y fuerzas de la naturaleza, pudiendo unos albergar la vida y otros no.

El reto que queda para los cosmólogos es calcular las probabilidades de que emerjan de esos diferentes universos a partir de esta complejidad inflacionaria ¿Son comunes o raros los universos como el nuestro? Existen, como para todos los problemas planteados, diversas conjeturas y consideraciones que influyen en la interpretación de cualquier teoría cosmológica futura cuántico-relativista. Hasta que no seamos capaces de exponer una teoría que incluya la relatividad general de Einstein (la gravedad-cosmos) y la mecánica cuántica de Planck (el cuanto-átomo), no será posible contestar a ciertas preguntas.

Todas las soluciones que buscamos parecen estar situadas en teorías más avanzadas que, al parecer, sólo son posibles en dimensiones superiores, como es el caso de la teoría de supercuerdas situada en 10, 11 ó 26 dimensiones. Allí, si son compatibles la relatividad y la mecánica cuántica, hay espacio más que suficiente para dar cabida a las partículas elementales, las fuerzas gauge de Yang-Mill, el electromagnetismo de Maxwell y la Gravedad que ahora está fuera del Modelo,  en definitiva, una descripción real del espacio-tiempo y la materia, la descripción verdadera del universo y de las fuerzas que en él actúan.

  No es fácil imaginar una teoría que lo explique todo. Siempre habrá una imperfección

Científicamente, la teoría del hiperespacio lleva los nombres de Teoría de Kaluza-Klein y supergravedad. Pero en su formulación más avanzada se denomina Teoría de Supercuerdas o Teoría M, una teoría que desarrolla su potencial en nueve dimensiones espaciales y una de tiempo: diez dimensiones, o, en la versión más avanzada de dies dimensiones de espacio y una de tiempo.  Así pues, trabajando en dimensiones más altas, esta teoría del hiperespacio puede ser la culminación que conoce dos milenios de investigación científica: la unificación de todas las fuerzas físicas conocidas. Como el Santo Grial de la Física, la “Teoría de Todo” que esquivó a Einstein que la buscó los últimos 30 años de su vida.

Durante el último medio siglo, los científicos se han sentido intrigados por la aparente diferencia entre las fuerzas básicas que mantienen unido al cosmos: la Gravedad, el electromagnetismo y las fuerzas nucleares fuerte y débil. Los intentos por parte de las mejores mentes del siglo XX para proporcionar una imagen unificadora de todas las fuerzas conocidas han fracasado. Sin embargo, la teoría del hiperespacio permite la posibilidad de explicar todas las fuerzas de la naturaleza y también la aparentemente aleatoria colección de partículas subatómicas, de una forma verdaderamente elegante.  En esta teoría del hiperespacio, la “materia” puede verse también como las vibraciones que rizan el tejido del espacio y del tiempo. De ello se sigue la fascinante posibilidad de que todo lo que vemos a nuestro alrededor, desde los árboles y las montañas a las propias estrellas, no son sino vibraciones del hiperespacio.

Resultado de imagen de La Teoría de cuerdas y la gravedad cuResultado de imagen de la gravedad cuántica

                  “Mañana” podría ser realidad la teoría de cuerdas y la Gravedad cuántica

Es tanta nuestra ignorancia que, a falta de datos fiables, nuestra imaginación es la que dentro de nuestras mentes, dibuja aquellos mundos y universos que sea capaz de idear, y, no pocas veces, esos “sueños”, sin nosotros saberlo, podrían ser el retrato de la realidad.

Antes mencionábamos los universos burbujas nacidos de la inflación y, normalmente, el contacto entre estos universos burbujas es imposible, pero analizando las ecuaciones de Einstein, los cosmólogos han demostrado que podría existir una madeja de agujeros de gusano, o tubos, que conectan estos universos paralelos.

Resultado de imagen de Las cuerdas en física

                                ¿Quién sabe lo que encontraremos mañana?

Hasta las cosas más extrañas pueden estar ahí fuera esperando que las encontremos. ¿No existen Agujeros Negros? ¿Por qué no otros extraños Objetos e incluso universos diferentes al nuestro?

Aunque muchas consecuencias de todos estos pensamientos son puramente teóricas, el viaje en el hiperespacio (si algún día fuera posible) podría proporcionar eventualmente la aplicación más práctica de todas: salvar la vida inteligente de la muerte de este universo nuestro cuando al final llegue el frío o el calor.

Claro que, ¡tenemos tanto “tiempo” por delante! que, mentes pensantes que por el Universo podrían ser más abundantes de lo que muchos piensan, tienen un margen aceptable para buscar esa fórmula que bien aplicada, evite el desastre final.

Otros, sin embargo, opinan que el Universo es el resultado de fluctuaciones del vacío pero, eso será objeto de otro comentario.

emilio silvera


¡Qué maravilla! Poder imaginar…y comprobar

$
0
0

¿Mini agujeros negros que atraviesan la Tierra a diario?

 

¿Mini agujeros negros que atraviesan la Tierra a diario?

 

Algunos consideran que unos 400 mini agujeros negros podrían atravesar la Tierra cada año. Además, podrían ser detectables por sus fuertes emisiones electromagnéticas. Quizás ha llegado la hora de buscarlas. Cosas como esta se leen de vez en cuando y también otras que…

Resultado de imagen de Mini agujeros negros que atraviesan la Tierra a diario

“Como si de fantasmas cósmicos se tratase, es posible que agujeros negrosen miniatura atraviesen la Tierra diariamente sin crear ningún peligro, como sugiere un estudio reciente.

Esta nueva teoría pone fin al temor de que poderosas máquinas como el Gran Colisionador de Hadronespuedan crear agujeros negros capaces de tragarse el planeta.

Los autores del estudio creen que estos minúsculos agujeros negros tienen un comportamiento completamente distinto al de sus hermanos mayores, llamados agujeros negros astrofísicos o de masa estelar.

A pesar de tener la masa de aproximadamente mil coches, un mini agujero negro es más pequeño que un átomo. Con ese tamaño un agujero negro no podría atraer mucha materia y en su lugar atraparía átomos y algunas moléculas más grandes a órbitas circulares, al igual que los protones atraen a los electrones en los átomos.

Así, los autores del estudio llaman a los mini agujeros negros que atraen materia a las órbitas «equivalentes gravitatorios de los átomos».”

Resultado de imagen de LHC

 

 

¿Os acordáis? Tanto miedo a que el Gran Colisionador de Hadrones (LHC) de Ginebra formara un agujero negro que podría haber atraído toda la materia a su alrededor y que pudiera haber destruído el planeta y resulta que, según un grupo de investigadores, es posible que este tipo de fenómenos, al menos los que son muy diminutos, atraviesen la Tierra cada día sin que ocurra absolutamente nada, son inofensivos y su ínfimo tamaño los hace inofensivos. Y esto, según un atrevido estudio publicado por una pareja de físicos en arXiv. org,  porque quizás interactúen con la materia de forma muy diferente a como se creía hasta ahora.

Los mini agujeros negros (si realmente existen) podrían ser diferentes a los gigantes que nos ha enseñado la astrofísica y cuya imagen todos tenemos en la cabeza. Los agujeros astrofísicos se originan cuando se colapsan las grandes estrellas para crear una región en el espacio cuya gravedad es tan potente que nada puede escapar a su atracción. Sus dimensiones son monstruosas. El que se encuentra en el centro de nuestra galaxia tiene 4 millones de veces la masa del Sol.

Todo esto me recuerda lecturas en las que, un gran físico, Gerard ´t Hooft, nos contaba como había dedicado gran parte de su tiempo al estudio y la investigación del comportamiento de los agujeros negros y de cómo las consideraciones obtenidas le llevaron a ese alto nivel sobre las leyes últimas de la física. Él suponía tener un pequeño agujero negro que obedecía tanto a las leyes de la mecánica cuántica como a las de la gravedad y, se preguntaba: ¿cómo se debería describir su comportamiento?

Resultado de imagen de Mini agujero negro imagen GPSResultado de imagen de Mini agujero negro imagen GPS

¿Se comportaría ese agujero negro como si fuera un átomo o molécula que obedece las leyes de la mecánica cuántica? No todo el mundo está de acuerdo con ese punto de vista. Algunos dicen que los agujeros negros son algo totalmente diferentes.  ¿Pero que es tan diferente en ellos? Los agujeros negros emiten partículas, igual que hacen los átomos radiactivos. Entonces, ¿por qué no deberían seguir las mismas reglas? Para decirlo de otra manera más clara, ´t Hooft creía que ellos tenían que obedecer absolutamente esas leyes si tenemos que creer en alguna clase de “ley y orden” a escala de la longitud de Planck.

Uno de los resultados de sus cálculos le produjo una enorme sorpresa. ¡Se encontró prácticamente con las mismas expresiones matemáticas que las de la Teoría de cuerdas! La fórmula para la captura y emisión de partículas por un agujero negro es exactamente igual a la fórmula de Veneziano. Aquello era extraño ya que no era un tema de cuerdas.

    Muchas son las sorpresas que nos darán todavía los agujeros negros que esconden muchos secretos sin desvelar

Claro que la teoría de cuerdas está por acabar y es difícil predecir si finalmente será compatible con la teoría de la Gravedad. En cualquier caso, ambas teorías están incompletas y tienen mucho más que decir…en el futuro. Seguramente serán simplemente los comienzos de algo mucho más profundo y bello que, de una vez por todas nos explique como es, en realidad, el Universo que habitamos.

La deformación del espacio-tiempo, de la materia, las transiciones de fase aún no comprendidas, lo que hay más allá de los Quarks, esas cuerdas vibrantes que se suponen…serán el primer estadio de la materia. Si creemos a Stephen Hawking, los agujeros negros son sólo el principio de algo más profundo, de una deformación mucho más seria del “espaciotiempo espumoso”.

Allí donde está presente la espuma cuántica de la que hablaban Wheeler y Planck. Y eso no es todo. Algunos como el mismo Hawking y sobre todo Sydney  Coleman de Harvard, especulan con el papel que en todo esto juegan los “agujeros de gusano”, esos conductos del espaciotiempo que nos podrían llevar hacia otras latitudes muy lejanas e incluso, hacia otras galaxias. Tales rarezas son admitidas por la teoría de Einstein y, como nuestra imaginación es imparable… Pasa lo mismo que ocurre en la mecánica cuántica, en la que todo lo que está permitido sucede obligatoriamente, es decir, si alguna configuración es posible, ésta tiene una probabilidad de que realmente ocurra.

Claro que, seguramente y al final del camino, los agujeros de gusano sólo serían una semilla que daría lugar al nacimiento de una teoría mejor, más avanzada y fiable que nos marcara el verdadero camino para burlar el muro que supone la velocidad de la luz sin tener que violar esa constante.

Muchas son las cosas que aún nos resultan misteriosas pero, ¿Qué alcanzaremos en el futuro? ¿Podremos realmente dominar y disponer de la energía de Planck que nos lleve hasta lugares inimaginables? ¿Serán nuestras mentes capaces de evolucionar hasta el extremo de que, algún día muy lejano en el futuro pudiéramos estar conectados con el ritmo vital del Universo, la energía pura que todo lo rige? Manejar esas potentes energías sería manejar los mundos, el espacio y, sobre todo, el Tiempo tan vital para nosotros.

¡Atravesar la pared y salir por el otro lado! El principio de incertidumbre dá lugar también a un efecto curioso conocido como efecto túnel: si se dispara un perdigón de plástico contra un muro el perdigón rebotará, porque no tiene energía suficiente para penetrarlo, pero a nivel de partículas fundamentales, la mecánica cuántica muestra inequívocamente que las funciones de onda de las partículas que constituyen el perdigón tienen todas ellas una parte diminuta que SÍ SALE a través del muro. ¿

Está claro que si nos dejamos llevar por nuestras elucubraciones, sin querer, nos metemos en terrenos donde las ideqas comienzan a ser extravagantes, entramos en el ámbito de la filosofía y, ¿por qué no? en el de la ciencia ficción pensando en lo que podría ser. Comenzamos a imaginar como viajeremos en el futuro imitando a los electrones cuando dan su “salto cuántico” y, de esa manera, iremos tan ricamente de un universo a otro al dominar esa cosmología cuántica quen nos permitirá realizar ¡tántas maravillas!

Así, las partículas microscópicas pueden tomar prestada energía suficiente para hacer lo que es imposible desde el punto de vista de la física clásica, es decir abrirse camino, como por un túnel, a través del muro ( aunque dado la enorme cantidad de partículas que posee el muro el efecto túnel se vuelve muy improbable pues todas y cada una de las partículas tendrían que tener la suerte de poder abrirse camino juntas

Esta escena que la hemos visto en muchas películas, sólo podría ser posible si no estuvieran los electrones rodeando a los átomos que conforman la pared. Cuando batimos palmas, por ejemplo, nuestras manos no pasan la una a través de la otra precisamente por eso, porque los electrones lo impiden y forman un caparazón electromagnético alrededor de todos los átomos que componen nuestras manos que, al batirlas chocan entre sí.

Cuando dejamos volar nuestra imaginación ayudada por los pocos conocimientos que de las cosas tenemos, podemos llegar a conclusiones realmente curiosas.

emilio silvera

¿La Física? ¡Una maravilla! Nos dice cómo funciona la Naturaleza

$
0
0

Resultado de imagen de PARTÍCULAS DE gERARD DE hOOFResultado de imagen de Gerard Hoof t

En su Libro Partículas, Gerard ´t Hofft, Premio Nobel de Física, nos cuenta:
“En el mundo de los seres vivos, la escala o tamaño crea importantes diferencias. En muchos aspectos, la anatomía de un ratón es una copia de la de un elefante, pero mientras que un ratón trepar por una pared prácticamente vertical sin mucha dificultad (y se puede caer desde una altura varias veces mayor que su propio tamaño sin hacerse daño), un elefante no sería capaz de realizar tal hazaña. Con bastante generalidad se puede afirmar que los efectos de la gravedad son menos importantes cuanto menores sean los objetos que consideremos (sean vivos o inanimados).”

Cuando llegamos a los seres unicelulares, se ve que ellos no hay distinción entre arriba y abajo. Para ellos, la tensión superficial del agua es mucho más importante que la fuerza de la gravedad a esa escala. Tranquilamente se pueden mover y desplazar por encima de una superficie acuática. Los pluricelulares no pueden hacer tal cosa.

Resultado de imagen de tENSIÓN SUPERFICIALResultado de imagen de tENSIÓN SUPERFICIAL

La tensión superficial es una consecuencia de que todas las moléculas y los átomos se atraen unos a otros con una fuerza que nosotros llamamos de Van der Waals. fuerza tiene un alcance muy corto; para ser precisos, diremos que la intensidad de esta fuerza a una distancia r es aproximadamente 1/r7. Esto significa que si se reduce la distancia dos átomos a la mitad de la fuerza de Van der Waals con la que se atraen uno a otro se hace 2 × 2 × 2 × 2 × 2 × 2 × 2 = 128 veces más intensa. Cuando los átomos y las moléculas se acercan mucho unos a otros quedan unidos muy fuertemente a través de esta fuerza. El conocimiento de esta fuerza se debe a Johannes Diderik Van der Waals (1837 – 1923) con su tesis sobre la continuidad del líquido y gaseoso que le haría famoso, ya que en esa época (1873), la existencia de las moléculas y los átomos no estaba completamente aceptado.

La tensión superficial del agua, es el efecto físico (energía de atracción entre las moléculas) que “endurece” la capa superficial del agua en reposo y permite a algunos insectos, como el mosquito y otros desplazarse por la superficie del agua sin hundirse.

El famoso físico inglés James Clerk Maxwell, que formuló la teoría del electromagnetismo de Faraday, quedó muy impresionado por este de Van der Waals.

Los tamaños de los seres uniceculares, animales y vegetales, se miden en micrómetros o “micras”, donde 1 micra es 1/1.000 de milímetro, aproximadamente el tamaño de los detalles más pequeños que se pueden observar con un microscopio ordinario. El mundo de los microbios es fascinante, pero no es el objeto de este trabajo, y continuaremos el viaje emprendido las partículas elementales que forman núcleos, átomos, células y materia, así como las fuerzas que intervienen en las interacciones fundamentales del universo y que afecta a todo lo que existe.

 

Hemos hablado del electrón que rodea el núcleo, de su carga eléctrica negativa que complementa la positiva de los protones y hace estable al átomo; una masa de solamente 1/1.836 de la del núcleo más ligero (el del hidrógeno). La importancia del electrón es vital en el universo.

Pero busquemos los “cuantos”. La física del siglo XX empezó exactamente en el año 1900, cuando el físico alemán Max Planck propuso una posible solución a un problema que había intrigando a los físicos durante años. Es el problema de la luz que emiten los cuerpos calentados a una cierta temperatura, y también la radiación infrarroja emitida, con menor intensidad, por los objetos más fríos (radiación de cuerpo negro).

Estaba bien aceptado entonces que esta radiación tenía un origen electromagnético y que se conocían las leyes de la naturaleza que regían estas ondas electromagnéticas. También se conocían las leyes para el frío y el calor, la así llamada “termodinámica”, o al menos eso parecía. Pero si utilizamos las leyes de la termodinámica para calcular la intensidad de una radiación, el resultado no tiene ningún sentido. Los cálculos nos dicen que se emitiría una cantidad infinita de radiación en el ultravioleta más lejano y, luego, esto no es lo que sucede. Lo que se observa es que la intensidad de la radiación muestra un pico a una cierta longitud de onda característica, y que la intensidad disminuye tanto para longitudes mayores como para menores. Esta longitud de onda característica es inversamente proporcional a la temperatura absoluta de objeto radiante (la temperatura absoluta se define por una escala de temperatura que empieza a 273º bajo cero). Cuando a 1.000º C un objeto se pone al “rojo vivo”, el objeto está radiando en la zona de luz visible.

Radiación de Cuerpo Negro

Un cuerpo negro es un objeto teórico o ideal que absorbe toda la luz y toda la energía radiante que incide sobre él. Nada de la radiación incidente se refleja o pasa a través del cuerpo negro. A pesar de su , el cuerpo negro emite luz y constituye un modelo ideal físico para el estudio de la emisión de radiación electromagnética. El nombre Cuerpo negro fue introducido por Gustav Kirchhoff en 1862.

La luz emitida por un cuerpo negro se denomina radiación de cuerpo negro. Todo cuerpo emite energía en de ondas electromagnéticas, siendo esta radiación, que se emite incluso en el vacío, tanto más intensa cuando más elevada es la temperatura del emisor. La energía radiante emitida por un cuerpo a temperatura ambiente es escasa y corresponde a longitudes de onda superiores a las de la luz visible (es decir, de menor frecuencia). Al elevar la temperatura no sólo aumenta la energía emitida sino que lo hace a longitudes de onda más cortas; a esto se debe el cambio de color de un cuerpo cuando se calienta. Los cuerpos no emiten con igual intensidad a todas las frecuencias o longitudes de onda, sino que siguen la ley de Planck.

Lo que Planck propuso fue simplemente que la radiación sólo podía ser emitida en paquetes de un tamaño dado. La cantidad de energía de uno de esos paquetes, o cuantos, es inversamente proporcional a la longitud de onda, y por tanto, proporcional a la frecuencia de radiación emitida. La fórmula es E = hν, donde E es la energía del paquete, ν es la frecuencia y h es una nueva constante fundamental de la naturaleza, la constante de Planck. Cuando Planck calculó la intensidad de la radiación térmica imponiendo nueva condición, el resultado coincidió perfectamente con las observaciones.

Poco tiempo después, en 1905, Einstein formuló esta teoría de una manera mucho más tajante: él sugirió que los objetos calientes no son los únicos que emiten radiación en paquetes de energía, sino que toda la radiación consiste en múltiplos del paquete de energía de Planck. El príncipe francés Louis-Victor de Broglie, dándole otra vuelta a la teoría, propuso que no sólo cualquier cosa que oscila tiene energía, sino que cualquier cosa con energía se debe comportar una “onda” que se extiende en una cierta región del espacio, y que la frecuencia ν de la oscilación verifica la ecuación de Planck. Por lo tanto, los cuantos asociados con los rayos de luz deberían verse una clase de partículas elementales: el fotón. Todas las demás clases de partículas llevan asociadas diferentes ondas oscilantes de campos de fuerza, esto lo veremos más adelante.

Resultado de imagen de eFECTO FOTOELÉCTRICO

El curioso comportamiento de los electrones en el interior del átomo, descubierto y explicado por el famoso físico danés Niels Bohr, se pudo atribuir a las ondas de de Broglie. Poco después, en 1926, Edwin Schrödinger descubrió cómo escribir la teoría ondulatoria de de Broglie con ecuaciones matemáticas exactas. La precisión con la cual se podían realizar cálculos era asombrosa, y pronto quedó claro que el comportamiento de todos los objetos pequeños quedaba exactamente determinado por las recién descubiertas “ecuaciones de ondas cuánticas”.

Está bien comprobado que la mecánica cuántica funciona de maravilla…, pero, sin embargo, surge una pregunta muy formal: ¿qué significan realmente estas ecuaciones?, ¿qué es lo que están describiendo? Isaac Newton, allá en 1867 formuló cómo debían moverse los planetas alrededor del Sol, estaba claro todo el mundo qué significaban sus ecuaciones: que los planetas estaban siempre en una posición bien definida des espacio y que sus posiciones y sus velocidades en un momento concreto determinan inequívocamente cómo evolucionarán las posiciones y las velocidades en el tiempo.

Pero los electrones todo es diferente. Su comportamiento parece estar envuelto en misterio. Es como si pudieran “existir” en diferentes lugares simultáneamente, como si fueran una nube o una onda, y esto no es un efecto pequeño. Si se realizan experimentos con suficiente precisión, se puede determinar que el electrón parece capaz de moverse simultáneamente a lo largo de trayectorias muy separadas unas de otras. ¿Qué puede significar todo esto?

Niels Bohr consiguió responder a esta pregunta de tal que con su explicación se pudo seguir trabajando, y muchos físicos siguen considerando su respuesta satisfactoria. Se conoce como la interpretación de Copenhague de la mecánica cuántica.

Si la mecánica cuántica tiene cosas extrañas y el espín es una de ellas. Y si uno piensa que la intuición le ayudará a comprender todo esto, pues no lo hará, o es poco probable que lo haga. Las partículas tienen un espín fundamental. Al igual que la carga eléctrica o la masa, el espín ayuda a definir que de partícula es cada una.

Las leyes de la mecánica cuántica han sido establecidas con mucha precisión; permite cómo calcular cualquier cosa que queramos saber. Pero si queremos “interpretar” el resultado, nos encontramos con una curiosa incertidumbre fundamental: que varias propiedades de las partículas pequeñas no pueden estar bien definidas de manera simultánea. Por ejemplo, podemos determinar la velocidad de una partícula con mucha precisión, pero entonces no sabremos exactamente dónde se encuentra; o a la inversa, podemos determinar la posición con precisión, pero entonces su velocidad queda mal definida. Si una partícula tiene espín (rotación alrededor de su eje), la dirección alrededor de la cual está rotando (la orientación del eje) no puede ser definida con gran precisión.

La posición y el momento de una partícula nunca lo podremos saber con precisión ilimitada.

No es fácil explicar de forma sencilla de dónde viene esta incertidumbre, pero existen ejemplos en la vida cotidiana que tienen algo parecido. La altura de un tono y la duración en el tiempo durante el cual oímos el tono tienen una incertidumbre mutua similar. Para afinar un instrumento se debe escuchar una nota durante un cierto intervalo de tiempo y compararla, por ejemplo, con un diapasón que debe vibrar también durante un tiempo. Notas muy breves no tienen bien definido el tono.

Para que las reglas de la mecánica cuántica funcionen, es necesario que todos los fenómenos naturales en el mundo de las cosas pequeñas estén regidos por las mismas reglas. Esto incluye a los virus, bacterias e incluso a las personas. Sin embargo, cuando más grande y más pesado es un objeto, más difícil es observar las desviaciones de las leyes del movimiento “clásicas” debidas a la mecánica cuántica. Me gustaría referirme a exigencia tan importante y tan peculiar de la teoría con la palabra “holismo”. Esto no es exactamente lo mismo que entienden algunos filósofos por holismo, y que podría definir como “el todo es más que la suma de sus partes”. Si la física nos ha enseñado algo es justo lo contrario. Un objeto compuesto de un gran de partículas puede ser entendido exactamente si se conocen las propiedades de sus partes (partículas); basta que sepamos sumar correctamente (¡y esto no es nada fácil en mecánica cuántica!). Lo que entiendo por holismo es que, efectivamente, el todo es la suma de las partes, pero sólo se puede hacer la suma si todas las partes obedecen a las mismas leyes. Por ejemplo, la constante de Planckh, que es igual a 6’626075… × 10-34 Julios segundo, debe ser exactamente la misma para cualquier objeto en cualquier sitio, es decir, debe ser una constante universal.

La mecánica cuántica es muy extraña a nuestro “sentido común”, sabemos que se desenvuelve en ese “universo” de lo muy pequeño, alejado de nuestra vida cotidiana en el macrocosmos tetradimensional que, no siempre coincide con lo que, en aquel otro infinitesimal acontece.

Resultado de imagen de PRINCIPIO DE INCERTIDUMBREResultado de imagen de PRINCIPIO DE INCERTIDUMBRE

Resultado de imagen de La ecuación de Dirac del Electrón

Las reglas de la mecánica cuántica funcionan tan bien que refutarlas resulta realmente difícil. Los trucos ingeniosos descubiertos por Werner Heisemberg, Paul Dirac y muchos otros mejoraron y completaron las reglas generales. Pero Einstein y otros pioneros como Erwin Schrödinger siempre presentaron serias objeciones a interpretación. Quizá funcione bien, pero ¿dónde está exactamente el electrón?, ¿en el punto x o en el punto y? En pocas palabras, ¿dónde está en realidad?, y ¿cuál es la realidad que hay detrás de nuestras fórmulas? Si tenemos que creer a Bohr, no tiene sentido buscar tal realidad. Las reglas de la mecánica cuántica, por sí mismas, y las observaciones realizadas con detectores son las únicas realidades de las que podemos hablar.

Es cierto que, existe otro universo dentro de nuestro del que, aún, nos queda mucho por aprender.

La mecánica cuántica puede ser definida o resumida así: en principio, con las leyes de la naturaleza que conocemos se puede predecir el resultado de cualquier experimento, en el sentido que la predicción consiste en dos factores: el primer factor es un cálculo definido con exactitud del efecto de las fuerzas y estructuras, tan riguroso como las leyes de Isaac Newton para el movimiento de los planetas en el Sistema Solar; el segundo factor es una arbitrariedad estadística e incontrolable definida matemáticamente de estricta. Las partículas seguirán una distribución de probabilidades dadas, primero de una forma y luego de otra. Las probabilidades se pueden calcular utilizando la ecuación de Schrödinger de función de onda (Ψ) que, con muchas probabilidades nos indicará el lugar probable donde se encuentra una partícula en un dado.

Muchos estiman que esta teoría de las probabilidades desaparecerá cuando se consiga la teoría que explique, de forma completa, todas las fuerzas; la buscada teoría del todo, lo que implica que nuestra descripción actual incluye variables y fuerzas que (aún) no conocemos o no entendemos. Esta interpretación se conoce como hipótesis de las variables ocultas.”

Resultado de imagen de El Universo como un Holograma

  ¿Podría ser el Universo un Holograma? Esto es igual a cómo un holograma que aparece en 3D es proyectado a partir de una película bidimensional que contiene toda la información codificada.

También Gerard ’t Hooft es el autor de lo que han dado en llamar principio holográfico es una conjetura especulativa acerca de las teorías de la Gravedad Cuántica propuesta en 1993 por este autor,  y mejorada y promovida por Leonard Susskin en 1995. Postula que toda la información contenida en cierto volumen de un espacio  concreto se puede conocer a partir de la información codificable sobre la frontera de dicha región. Una importante consecuencia es que la cantidad máxima de información que puede contener una determinada región de espacio rodeada por una superficie diferenciable está limitada por el área total de dicha superficie.

Por ejemplo, se pueden modelar todos los eventos que ocurran en un cuarto o una habitación creando una teoría en la que sólo tome en cuenta lo que suceda en sus paredes. En el principio holográfico también se afirma que por cada cuatro Unidades de Planck  existe al menos un grado de libertad  (o una unidad constante de Bolttzmann k de máxima entropía). Esto se conoce como frontera de Bekenstein:

S\le\frac{A}{4}Resultado de imagen de frontera de Bekenstein:

 

 

donde S es la entropía y A es la unidad de mensura considerada. En unidades convencionales la fórmula anterior se escribe:

S\le \left( \frac{kc^3}{G\hbar} \right) \frac{A}{4} = k \frac{A}{4\ell_P^2}

donde:

Claro que esta… ¡Es otra Historia!

emilio silvera

No siempre hablamos de lo que comprendemos

$
0
0

Resultado de imagen de La física y la teoría final

 

¡La Física! Lo que busca la física fundamental es reducir las leyes de la naturaleza a una teoría final sencilla que lo explique todo. El físico y premio Nobel Steven Weinberg señala que las reglas fundamentales son lo más satisfactorio (al menos para él). Las leyes básicas de Isaac Newton, que predicen el comportamiento de los planetas, son más satisfactorias, por ejemplo, que un almanaque en el que se indique la posición de todos los planetas en cada momento. Weinberg nos dice que la Física no puede explicarlo todo, matizando que sólo puede explicar los sucesos relacionándolos con otros sucesos y con las reglas existentes.

Resultado de imagen de http://salonkritik.net/08-09/planets.jpg

Por ejemplo, las órbitas de los planetas son el resultado de unas reglas, pero las distancias de los planetas al Sol son accidentales, y no son consecuencia de ley fundamental alguna. Claro que, también las leyes podrían ser fruto de casualidades. Lo que sí es cierto es que los físicos están más interesados por descubrir las reglas que por los sucesos que dichas reglas determinan, y más por los hechos que son independientes del tiempo; por ejemplo, les interesa más la masa del electrón que un tornado que se pueda producir en un lugar determinado.

La ciencia, como nos dice Weinberg, no puede explicarlo todo y, sin embargo, algunos físicos tienen la sensación de que nos estamos acercando a “una explicación del mundo” y, algún día, aunando todos los esfuerzos de muchos, las ideas de las mejores mentes que han sido, y las nuevas que llegarán, podremos, al fín, construir esa Teoría final tan largamente soñada que, para que sea convincente, deberá también, incluirnos a nosotros. Pero, paradogicamente y a pesar de estos pensamientos, existen hechos que los contradicen, por ejemplo, conocemos toda la física fundamental de la molécula de agua desde hace 7 decenas de años, pero todavía no hay nadie que pueda explicar por qué el agua hierve a los 100 ºC. ¿Qué ocurre? ¿Somos acaso demasiado tontos? Bueno, me atrevería a pronosticar que seguiremos siendo “demasiado tontos” incluso cuando los físicos consigan (por fin) esa teoría final que nos pueda dar una “explicación del mundo”. Siempre seguiremos siendo aprendices de la naturaleza que, sabia ella, nos esconde sus secretos para que persista el misterio.

¿Qué sería de nosotros si lo supiéramos todo?

Resultado de imagen de El Modelo EstándarResultado de imagen de El Modelo Estándar

La explicación que dan los físicos actualmente  sobre la subestructura de la materia se llama “el modelo estándar”. En este modelo están incluídas las doce partículas elementales y las tres fuerzas que, cuando se mezclan y se encajan, sirven para construir todo lo que hay en el universo, desde un redondo pan de pueblo hecho en un horno de leña,  hasta las más complejas galaxias, y puede explicar todos los mecanismos de acción, es decir, la mecánica del mundo.

Entre las partículas figuran los seis Quarks famosos: arriba, abajo, extraño, encanto, fondo y cima. Las otras seis partículas son Leptones: el electrón y sus dos parientes más pesados, el muón y el tau y los tres neutrinos a ellos asociados. Las tres fuerzas son la electromagnética, la fuerza nuclear fuerte (que mantiene unidos a los quarks) y la fuerza nuclear débil (responsable de la radioactividasd). Hay una cuarta fuerza: la Gravedad que, aunque tan importante como las demás, nadie ha sabido como encajarla en el modelo estándar. Todas las partículas y fuerzas de este modelo son cuánticas; es decir, siguen las reglas de la mecánica cuántica. Aún no existe una teoría de la gravedad cuántica.

En realidad, la región que denominamos Gravedad cuántica nos lleva y comprende preguntas sobre el origen del universo observable que nadie ha sabido contestar. Nos lleva a complejos procesos cuánticos situados en las épocas más cercanas imaginables en un espacio-tiempo clásico, es decir, en lo que se conoce como Tiempo de Planck a 10-43 segundos del supuesto big bang, cuando reinaba una temperatura del orden de 10 x 1031 K. Pero, como hemos dicho, al no existir una teoría autoconsistente de la Gravedad cuántica, lo único que podemos hacer (como en tantas otras áreas de la Ciencia)  es especular.

Resultado de imagen de el modelo estándar de la física de partículas

El Modelo Estándar no es, ni mucho menos, satisfactorio. Los científicos piensan que no sólo es incompleto, sino que es demasiado complicado y, desde hace mucho tiempo, buscan, incansables, otro modelo más sencillo y completo que explique mejor las cosas y que, además, no tenga (como tiene el modelo actual) una veintena de parámetros aleatorios y necesarios para que cuadren las cuentas…, un ejemplo: el bosón de Higgs necesario para dar masa a las partículas.

¡La masa! ese gran problema. Todas las partículas tienen masa diferentes pero nadie sabe de donde salen sus valores. No existe fórmula alguna que diga, por ejemplo,  que el quark extraño debería pesar el doble (o lo que sea) del quark arriba, o que el electrón deba tener 1/200 (u otra proporción) de la masa del muón. Las masas son de todo tipo y es preciso “ponerlas a mano”, como se suele decir: cada una ha de ser medida experimental e individualmente. En realidad, ¿por qué han de tener masa las partículas? ¿de dónde viene la masa?

Norma Materia Oscura

No puedo evitarlo ni tampoco me puedo quedar callado, cuando he asistido a alguna conferencia sobre la materia y, el ponente de turno se agarra a la “materia oscura” para justificar lo que no sabe, si al final hay debate, entro en escena para discutir sobre la existencia de esa “materia fantasma” que quiere tapar nuestra enorme ignorancia.

Pero, sigamos con el problema de la masa. Para resolverlo, muchos expertos en física de partículas creen actualmente en algo que llaman “campo de Higgs”. Se trata de un campo misterioso, invisible y etéreo que está permeando todo el espacio (¿habrán vuelto al antiguo éter pero cambiándole el nombre?). Hace que la materia parezca pesada, como cuando tratamos de correr por el fondo de la piscina llena de agua pero que el agua no se pudiera ver. Si pudiéramos encontrar ese campo, o más bien la partícula la partícula que se cree es la manifestación de ese campo (llamada el bosón de Higgs), avanzaríamos un largo trecho hacia el conocimiento del universo.

Resultado de imagen de El Gran Colisionador de Hadrones

               El Gran Colisionador de Hadrones

Aquí, en este imponente artilugio inventiva de nuestras mentes, se quiere dar respuesta a una serie de interrogantes que se espera solucionar con este experimento:

• Qué es la masa.
• El origen de la masa de las partículas
• El origen de la masa para los bariones.
• El número exacto de partículas del átomo.

Claro que, si no fuera tan largo de contar, os diría que, en realidad, el Campo de Higgs se descubrió hace ya muchos siglos en la antigua India, con el nopmbre de maya, que sugiere la idea de un velo de ilusión para dar peso a los objetos del mundo material. Pocos conocen que, los hindúes fueron los que más se acercaron a las ideas modernas sobre el átomo, la física cuántica y otras teorías actuales. Ellos desarrollaron muy temprano sólidas teorías atomistas sobre la materia. Posiblemente, el pensamiento atomista griega recibió las influencias del pensamiento de los hindúes a través de las civilizaciones persas. El Rig-Veda, que data de alguna fecha situada entre el 2000 y el 1500 a. C., es el primer texto hindú en el que se exponen unas ideas que pueden considerarse leyes naturales universales. La ley cósmica está realcionada con la luz cósmica.

 Resultado de imagen de Anteriores a los primeros Upanishads tenemos en la India la creación de los Vedas,

Anteriores a los primeros Upanishads tenemos en la India la creación de los Vedas, visiones poéticas y espirituales en las que la imaginación humana ve la Naturaleza y la expresa en creación poética, y después va avanzando hacia unidades más intensamente reales que espirituales hasta llegar al Brahmán único de los Upanishads.

Hacia la época de Buda (500 a, C.), los Upanishad, escritos durante un período de varios siglos, mencionaban el concepto  de svabhava, definido como “la naturaleza inherente de los distintos materiales”; es decir, su eficacia causal única, , tal como la combustión en el caso del fuego, o el hecho de fluir hacia abajo en el caso dela agua. El pensador Jainí Bunaratna nos dijo: “Todo lo que existe ha llegado a existir por acción de la svabhava. Así… la tierra se transforma en una vasija y no en paño… A partir de los hilos se produce el paño y no la vasija”.

También aquellos pensadores, manejaron el concepto de yadrccha, o azar desde tiempos muy remotos. Implicaba la falta de orden y la aleatoriedad de la causalidad. Ambos conceptos se sumaron a la afirmación del griego Demócrito medio siglo más tarde: “Todo lo que hay en el universo es fruto del azar y la necesidad”. El ejemplo que que dio Demócrito -similar al de los hilos del paño- fue que, toda la materia que existe, está formada por a-tomos o átomos.

Bueno, no lo puedo evitar, mi imaginación se desboca y corre rápida por los diversos pensamientos que por la mente pasan, de uno se traslada a otros y, al final, todo resulta un conglomerado de ideas que, en realidad, quieren explicar, dentro de esa diversidad, la misma cosa.

emilio silvera

¿Viajar en el Tiempo! ¡Otro sueño ilusorio!

$
0
0

En cromodinámica cuántica, la propiedad de libertad asintótica hace que la interacción entre quarks sea más débil cuanto más cerca están unos de otros (confinación de quarks) y la fuerza crece cuando los quarks tratan de separarse, es la única fuerza que crece con la distancia. Los quarks y los gluones están confinados en una región cuyo valor se define por:

R » ћc /L » 10-13 cm

Poder contemplar Quarks libres sólo podría haber sido posible en aquellos primeros momentos, antes de la formación de los hadrónes. En realidad, la única manera de que pudiéramos observar quarks libres, sería en un ambiente con la temperatura del universo primitivo, es la temperatura de desconfinamiento.

Ahora se cree que el Big Crunch nunca se producirá y que la muerte del Universo será térmica, es decir, una temperatura del cero absoluto que lo paralizará todo, ni los átomos se moveran en ese frío de muerte que dejará un universo congelado donde ni brillaran las estrellas ni estará presente ninguna clase de vida.

En la parte anterior de este mismo trabajo,  estaba hablando del Big Crunch y me pasé a otro (los quarks), así que cerremos este capítulo del Big Crunch que está referido a un estado final de un universo cerrado de Friedmann  (es decir, uno en el que la densidad excede a la densidad crítica). Dicho universo se expande desde el Big Bang inicial, alcanza un radio máximo, y luego colapsa hacia un Big Crunch, donde la densidad de la materia se vuelve infinita después de que la gravedad haga parar la expansión de las galaxias que, lentamente al principio, y muy rápidamente después, comenzarán a desplazarse en sentido contrario, desandarán el camino para que toda la materia del universo se junte en un punto, formado una singularidad en la que dejaría de existir el espacio-tiempo. Después del Big Crunch debería haber otra fase de expansión y colapso, dando lugar a un universo oscilante.  universo que se va y universo que viene.

Pero, ¿y nosotros?, ¿qué pintamos aquí?

¡Mirado así no parece que seamos gran cosa!

Antes de pasar a otros temas, retomemos el de los viajes en el tiempo y las paradojas que pueden originar.

Una versión de la máquina del tiempo de Thorne consiste en dos cabinas, cada una de las cuales contiene dos placas de metal paralelas. Los intensos cambios eléctricos creados entre cada par de placas de metal paralelas (mayores que cualquier cosa posible con la tecnología actual) rizan el tejido del espacio-tiempo, creando un agujero en el espacio que une las dos cabinas. Una cabina se coloca entonces en una nave espacial y es acelerada a velocidades próximas a la de la luz, mientras que la otra cabina permanece en la Tierra. Puesto que un agujero de gusano puede conectar dos regiones des espacio con tiempos diferentes, un reloj en la cabina de la nave marcha más despacio que un reloj en la cabina de la Tierra. Debido a que el tiempo transcurriría a diferentes velocidades en los dos extremos del agujero de gusano, cualquiera que entrase en un extremo del agujero de gusano sería instantáneamente lanzado al pasado o al futuro.

Stephen Hawking

Viajar al pasado y conocer a personajes famosos a los que contar las novedades científicas. Algunos dicen que el viaje en el Tiempo está prohibido, aunque es posible. Siempre hemos tenido una gran imaginación y, cuando se sabíamos contestar a una cuestión compleja… ¡Inventamos la respuesta!

Normalmente, una de las ideas básicas de la física elemental es que todos los objetos tienen energía positiva. Las moléculas vibrantes, los vehículos que corren, los pájaros que vuelan, los niños jugando tienen todos energía positiva. Por definición, el espacio vacío tiene energía nula. Sin embargo, si podemos producir objetos con “energías negativas” (es decir, algo que tiene un contenido de energía menor que el vacío), entonces podríamos ser capaces de generar configuraciones exóticas de espacio y tiempo en las que el tiempo se curve en un circulo.

Parece que la función de las placas metálicas paralelas consiste en generar la materia o energía exótica necesaria para que las bocas de entrada y salida del agujero de gusano permanezcan abiertas y, como la materia exótica genera energía negativa, los viajeros del tiempo no experimentarían fuerzas gravitatorias superiores a 1g, viajando así al otro extremo de la galaxia e incluso del universo o de otro universo paralelo de los que promulga Stephen Hawking. En apariencia, el razonamiento matemático de Thorne es impecable conforme a las ecuaciones de Einstein.

Normalmente, una de las ideas básicas de la física elemental es que todos los objetos tienen energía positiva. Las moléculas vibrantes, los vehículos que corren, los pájaros que vuelan, los niños jugando tienen todos energía positiva. Por definición, el espacio vacío tiene energía nula. Sin embargo, si podemos producir objetos con “energías negativas” (es decir, algo que tiene un contenido de energía menor que el vacío), entonces podríamos ser capaces de generar configuraciones exóticas de espacio y tiempo en las que el tiempo se curve en un circulo.

               Muchas son las máquinas del tiempo que hemos desarrollado en nuestra imaginación

Por el momento, al no ser una propuesta formal, no hay veredicto sobre la máquina del tiempo de Thorne. Su amigo, Stephen Hawking, dice que la radiación emitida en la entrada del agujero sería suficientemente grande como contribuir al contenido de materia y energía de las ecuaciones de Einstein. Esta realimentación de las ecuaciones de Einstein distorsionaría la entrada del agujero de gusano, incluso cerrándolo para siempre. Thorne, sin embargo, discrepa en que la radiación sea suficiente para cerrar la entrada.

Aquí es donde interviene la teoría de supercuerdas. Puesto que la teoría de supercuerdas es una teoría completamente mecanocuántica que incluye la teoría de la relatividad general de Einstein como un subconjunto, puede ser utilizada para calcular correcciones a la teoría del agujero de gusano original.

En principio nos permitiría determinar si la condición AWEC es físicamente realizable, y si la entrada del agujero de gusano permanece abierta para que los viajeros del tiempo puedan disfrutar de un viaje al pasado.

Nuestra línea de universo resume toda nuestra historia, que nacemos hasta que morimos. Cuanto más rápido nos movemos más se inclina la línea de universo. Sin embargo, la velocidad más rápida a la que podemos viajar es la velocidad de la luz. Por consiguiente, una de este diagrama  espacio-temporal está “prohibida”; es decir, tendríamos que ir a mayor velocidad que la luz para entrar en esta zona prohibida por la relatividad especial de Einstein, que nos dice que nada en nuestro universo puede viajar a velocidades superiores a c.

Agujero de gusano

           Agujero de gusano

“Una de las mayores dificultades para viajar en el tiempo ha sido resuelta por el físico teórico Amos Ori, del Israel Institute of Technology en Haifa (Technion), informa la revista Nature. El artículo de Nature ha sido traducido por Astroseti. “

                 Sí, ¿pero dónde está esa energía negativa para viajar en el Tiempo?

Este concepto más bien simple se conoce con un nombre que suena complicado: la condición de energía media débil (average weak energy condition, o AWEC). Como Thorne tiene cuidado en señalar, la  AWEC debe ser violada; la energía debe hacerse temporalmente negativa para que el viaje en el tiempo tenga éxito. Sin embargo, la energía negativa ha sido históricamente anatema para los relativistas, que advierten que la energía negativa haría posible la antigravedad y un montón de otros fenómenos que nunca se han visto experimentalmente.

Pero Thorne señala al momento que existe una forma de obtener energía negativa, y esto es a través de la teoría cuántica.

En 1.948, el físico holandés Hendrik Casimir demostró que la teoría cuántica puede crear energía negativa: tomemos simplemente dos placas de metal paralelas y descargadas ordinariamente, el sentido común nos dice que estas dos placas, puesto que son eléctricamente neutras, no ejercen ninguna fuerza entre sí. Pero Casimir demostró que, debido al principio de incertidumbre de Werner Heisenberg, en el vacío que separa estas dos placas existe realmente una agitada actividad, con billones de partículas y antipartículas apareciendo y desapareciendo constantemente. Aparecen a partir de la “nada” y vuelven a desaparecer en el “vacío”. Puesto que son tan fugaces, son, en su mayoría, inobservables, y no violan ninguna de las leyes de la física. Estas “partículas virtuales” crean una fuerza neutra atractiva entre estas dos placas que Casimir predijo que era medible.

Cuando Casimir publicó el artículo, se encontró con un fuerte escepticismo. Después de todo, ¿cómo pueden atraerse dos objetos eléctricamente neutros, violando así las leyes normales de la electricidad clásica? Esto era inaudito. Sin embargo, en 1.985 el físico M. J. Sparnaay observó este efecto en el laboratorio, exactamente como había predicho Casimir. Desde entonces (después de un sin fin de comprobaciones), ha sido bautizado como el efecto Casimir.

Una manera de aprovechar el efecto Casimir mediante grandes placas metálicas paralelas descargadas, sería el descrito para la puerta de entrada y salida del agujero de gusano de Thorne para poder viajar en el tiempo.

Kip Thorne explica a un alumno los misterios y posibilidades de viajar en el Tiempo

Por el momento, al no ser una propuesta formal, no hay veredicto sobre la máquina del tiempo de Thorne. Su amigo, Stephen Hawking, dice que la radiación emitida en la entrada del agujero sería suficientemente grande como para contribuir al contenido de materia y energía de las ecuaciones de Einstein. Esta realimentación de las ecuaciones de Einstein distorsionaría la entrada del agujero de gusano, incluso cerrándolo para siempre. Thorne, sin embargo, discrepa en que la radiación sea suficiente para cerrar la entrada.

Aquí es donde interviene la teoría de supercuerdas. Puesto que la teoría de supercuerdas es una teoría completamente mecanocuántica que incluye la teoría de la relatividad general de Einstein como un subconjunto, puede ser utilizada para calcular correcciones a la teoría del agujero de gusano original.

En principio nos permitiría determinar si la condición AWEC es físicamente realizable, y si la entrada del agujero de gusano permanece abierta para que los viajeros del tiempo puedan disfrutar de un viaje al pasado.

               Podríamos ver como se forman las nebulosas y nacen y mueren las estrellas

Antes comentaba algo sobre disfrutar de un viaje al pasado pero, pensándolo bien, no estaría yo tan seguro. Rápidamente acuden a mi mente múltiple paradojas que, de una u otra especie han sido narradas, principalmente por escritores de ciencia-ficción que, por lo general, son los precursores del futuro.

Si viajar en el tiempo finalmente pudiera ser posible, cosas parecidas a esta locura ¡”podrían ocurrir”! I. B. S. Haldane, nos decía:

“La naturaleza no sólo es más extraña de lo que suponemos; es más extraña de lo que podamos suponer”.

emilio silvera

Conjeturar… ¡Tratando de saber!

$
0
0

El principio antrópico y otras cuestiones

¡El Universo! ¿Sabía que nosotros íbamos a venir?

¿El Principio Antrópico? Parece conveniente hacer una pequeña reseña que nos explique que es un principio en virtud del cual la presencia de la vida humana está relacionada con las propiedades del Universo.  Como antes hemos comentado de pasada, existen varias versiones del principio antrópico.  La menos controvertida es el principio antrópico débil, de acuerdo con el cual la vida humana ocupa un lugar especial en el Universo porque puede evolucionar solamente donde y cuando se den las condiciones adecuadas para ello.  Este efecto de selección debe tenerse en cuenta cuando se estudian las propiedades del Universo.

Resultado de imagen de Principio antrópico: La Vida en el Universo

Una versión más especulativa, el principio antrópico fuerte, asegura que las leyes de la física deben tener propiedades que permitan evolucionar la vida.  La implicación de que el Universo fue de alguna manera diseñado para hacer posible la vida humana hace que el principio antrópico fuerte sea muy controvertido, ya que, nos quiere adentrar en dominios divinos que, en realidad, es un ámbito incompatible con la certeza comprobada de los hechos a que se atiene la ciencia, en la que la fe, no parece tener cabida. Sin embargo, algunos han tratado de hacer ver lo imposible.

“Basado en las propuestas del premio Nobel de física Paul Dirac sobre los ajustados, sincronizados y muy precisos valores de las constantes de la naturaleza, los físicos actuales comienzan a valorar aquello que han denominado el “principio antrópico¨, es decir, poco a poco, a lo largo de los años han entendido que siempre quedará un espacio de información faltante cuando intentamos teorizar o conceptualizar los inicios del universo supeditados exclusivamente sobre la capacidad contenida en las leyes de la física para explicar dichos inicios.”

 

 

El principio antrópico nos invita al juego mental de probar a “cambiar” las constantes de la Naturaleza y entrar en el juego virtual de ¿Qué hubiera pasado si…? Especulamos con lo que podría haber sucedido si algunos sucesos no hubieran ocurrido de tal a cual manera para ocurrir de ésta otra. ¿Qué hubiera pasado en el planeta Tierra si no aconteciera en el pasado la caída del meteorito que acabó con los dinosaurios? ¿Habríamos podido estar aquí hoy nosotros? ¿Fue ese cataclismo una bendición para la Humanidad y nos quitó de encima a unos terribles rivales?

Fantasean con lo que pudo ser…. Es un ejercicio bastante habitual, solo tenemos que cambiar la realidad de la historia o de los sucesos verdaderos para pretender fabricar un presente distinto.  Cambiar el futuro puede resultar más fácil, nadie lo conoce y no pueden rebatirlo con certeza ¿Quién sabe lo que pasará mañana?

El problema de si las constantes físicas son constantes se las trae. Aparte del trabalenguas terminológico arrastra tras de sí unas profundas consecuencias conceptuales. Lo primero, uno de los pilares fundamentales de la relatividad especial es el postulado de que las leyes de la física son las mismas con independencia del observador. Esto fue una generalización de lo que ya se sabía cuando se comenzó a estudiar el campo electromagnético, pero todo lo que sabemos en la actualidad nos lleva a concluir que este postulado es bastante razonable.

Lo que ocurra en la Naturaleza del Universo está en el destino de la propia Naturaleza del Cosmos, de las leyes que la rigen y de las fuerzas que gobiernan sus mecanismos sometidos a principios y energías que, en la mayoría de los casos, se pueden escapar a nuestro actual conocimiento.

Lo que le pueda ocurrir a nuestra civilización además de estar supeditado al destino de nuestro planeta, de nuestro Sol y de nuestro Sistema Solar y la galaxia, también está en manos de los propios individuos que forman esa civilización y que, con sensibilidades distintas y muchas veces dispares, hace impredecibles los acontecimientos que puedan provocar individuos que participan con el poder individual, es decir, esa parcial disposición que tenemo0s  del “libre albedrío”.

            ¿Cómo sería nuestro mundo si las constantes universales fueran diferentes?

Siempre hemos sabido especular con lo que pudo ser o con lo que podrá ser  si….,  lo que, la mayoría de las veces, es el signo de cómo queremos ocultar nuestra ignorancia. Bien es cierto que sabemos muchas cosas pero, también es cierto que son más numerosas las que no sabemos.

Sabiendo que el destino irremediable de nuestro mundo, el planeta Tierra, es de ser calcinado por una estrella gigante roja en la que se convertirá el Sol cuando agote la fusión de su combustible de Hidrógeno, Helio, Carbono, etc.,  para que sus capas exteriores de materia exploten y salgan disparadas al espacio exterior, mientras  que, el resto de su masa se contraerá hacia su núcleo bajo su propio peso, a merced de la Gravedad, convirtiéndose en una estrella enana blanca de enorme densidad y de reducido diámetro.  Sabiendo eso, el hombre está poniendo los medios para que, antes de que llegue ese momento (dentro de algunos miles de millones de años), poder escapar y dar el salto hacia otros mundos lejanos que, como la Tierra ahora, reúna las condiciones físicas y químicas, la atmósfera y la temperatura adecuadas para acogernos.

                                    El Sol será una Gigante roja y, cuando eso llegue, la Tierra…

Pero el problema no es tan fácil y, se extiende a la totalidad del Universo que, aunque mucho más tarde, también está abocado a la muerte térmica,  el frío absoluto si se expande para siempre como un Universo abierto y eterno. A estas alturas se ha descartado el Big Chunch y se saber que la expansión del Universo es imparable y que con el paso del tiempo las galaxias estarán más alejadas las unas de las otras hasta que, la energía, las temperaturas sean -273 ºC, un ámbito de muerte, allí nada -ni siguiera los átomos-, absolutamente nada se mueve.

Imagen relacionada

Muerte térmica del Universo: De acuerdo con las leyes de la termodinámica, en el que toda la materia alcanzará finalmente la misma temperatura. En estas condiciones no existe energía disponible para realizar trabajo y la entropía del Universo se encuentra en su máximo. Este resultado fue predicho por el físico alemán Rudolf Julius Emmanuel Clausius (1822-1888), quien introdujo el concepto de entropía.

        Y, nuevos cálculos sugieren que el cosmos puede estar un poco más cerca a una muerte térmica.

Para tener todo ese tumulto — estrellas en erupción, galaxias chocantes, agujeros negros que colapsan – el cosmos es un lugar sorprendentemente ordenado. Los cálculos teóricos han demostrado desde hace mucho que la entropía del universo – una medida de su desorden – no es más que una diminuta fracción de la cantidad máxima permitida.

Un nuevo cálculo de la entropía mantiene este resultado general pero sugiere que el universo está más desordenado de lo que los científicos habían pensado — y ha llegado ligeramente más lejos en su gradual camino hacia la muerte, según concluyen dos cosmólogos australianos.

Un análisis de Chas Egan de la Universidad Nacional Australiana en Canberra y Charles Lineweaver de la Universidad de Nueva Gales del Sur en Sydney indica que la entropía colectiva de todos los agujeros negros supermasivos en el centro de las galaxias es unas 100 veces mayor de lo anteriormente calculado. Debido a que los agujeros negros supermasivos son los mayores contribuyentes a la entropía cósmica, el hallazgo sugiere que la entropía del universo también es 100 veces mayor que la anterior estimación, según informaban los científicos el 23 de septiembre en ArXiv.org.” (fuente: Ciencia Kanija)

El irreversible final está entre los tres modelos que se han podido construir para el futuro del Universo, de todas las formas  que lo miremos es negativo para la Humanidad -si es que puede llegar tan lejos-.  En tal situación, algunos ya están buscando la manera de escapar. Stephen Hawking ha llegado a la conclusión de que estamos inmersos en un multiuniverso. Como algunos otros él dice que existen múltiples universos conectados los unos a los otros.  Unos tienen constantes de la Naturaleza que permiten vida igual o parecida a la nuestra, otros posibilitan formas de vida muy distintas y otros muchos no permiten ninguna clase de vida.

Este sistema de inflación autorreproductora nos viene a decir que cuando el Universo se expande (se infla) a su vez, esa burbuja crea otras burbujas que se inflan y a su vez continúan creando otras nuevas más allá de nuestro horizonte visible.  Cada burbuja será un nuevo Universo, o mini-universo en los que reinarán escenarios diferentes o diferentes constantes y fuerzas.

El escenario que describe la imagen, ha sido explorado y el resultado hallado es que en cada uno de esos universos, como hemos dicho ya, pueden haber muchas cosas diferentes, pueden terminar con diferentes números de dimensiones espaciales o diferentes constantes y fuerzas de la Naturaleza, pudiendo unos albergar la vida y otros no. Claro que, sólo son pensamientos y conjeturas de lo que podría ser.

El reto que queda para los cosmólogos es calcular las probabilidades de que emerjan diferentes universos a partir de esta complejidad inflacionaria ¿Son comunes o raros los universos como el nuestro? Existen, como para todos los problemas planteados diversas conjeturas y consideraciones que influyen en la interpretación de cualquier teoría cosmológica futura cuántico-relativista.  Hasta que no seamos capaces de exponer una teoría que incluya la relatividad general de Einstein (la Gravedad-Cosmos y la Mecánica Cuántica-Átomo, no será posible  contestar a ciertas preguntas.

Existen en realidad, en nuestro Universo las cuerdas vibrantes de la Teoría M, o, simplemente se trata de un ejercicio mental complejo

Todas las soluciones que buscamos parecen estar situadas en teorías más avanzadas que, al parecer, solo son posibles en dimensiones superiores, como es el caso de la teoría de supercuerdas situada en 10 ó 26 dimensiones, allí, si son compatibles la relatividad y la mecánica cuántica, hay espacio más que suficiente para dar cabida  a las partículas elementales, las fuerzas gauge de Yang-Mill, el electromagnetismo de Maxwell y, en definitiva, al espacio-tiempo y la materia, la descripción verdadera del Universo y de las fuerzas que en el actúan.

Científicamente, la teoría del Hiperespacio lleva los nombres de teoría de Kaluza-Klein y súper gravedad.  Pero en su formulación más avanzada se denomina teoría de supercuerdas, una teoría que desarrolla su potencial en nueve dimensiones espaciales y una de tiempo, diez dimensiones.  Así pues, trabajando en dimensiones más altas, esta teoría del Hiperespacio puede ser la culminación que conoce dos milenios de investigación científica: la unificación de todas las fuerzas físicas conocidas.  Como el Santo Grial de la Física, la “teoría de todo” que esquivó a Einstein que la buscó los últimos 30 años de su vida.

Resultado de imagen de Los científicos mexicanos e italianos han encontrado cómo se curva el espacio por la presencia de masas directamente de observaciones astronómicas, a diferencia de las aproximaciones puramente teóricas propias de otras teorías gravitacionales, como las supercuerdas o la gravitación cuántica.

Esquema que muestra la curvatura del espacio sufrida por la presencia de una galaxia según la teoría de relatividad de Einstein (superficie roja) y la …

Parece que algo no va, algunos parámetros se presentan difusos, la Gravedad no acabamos de entenderla, el mundo infinitesimal… es raro

Durante el último medio siglo, los científicos se han sentido intrigados por la aparente diferencia entre las fuerzas básicas que mantienen unido al al Universo: la Gravedad, el electromagnetismo y las fuerzas nucleares fuerte y débil.  Los intentos por parte de las mejores mentes del siglo XX para proporcionar una imagen unificadora de todas las fuerzas conocidas han fracasado.  Sin embargo, la teoría del Hiperespacio permite la posibilidad de explicar todas las fuerzas de la Naturaleza y también la aparentemente aleatoria colección de partículas subatómicas, de una forma verdaderamente elegante.  En esta teoría del Hiperespacio, la “materia” puede verse también como las vibraciones que rizan el tejido del espacio y del tiempo.  De ello se sigue la fascinante posibilidad de que todo lo que vemos a nuestro alrededor, desde los árboles y las montañas a las propias estrellas, no son sino vibraciones del Hiperespacio.

Resultado de imagen de Vibraciones del Hiperespacio

No, no será fácil llegar a las respuestas de éstas difíciles preguntas que la física tiene planteadas. Y, sin embargo, ¿cómo podríamos describir lo que en estas teorías han llegado a causar tanta pasión en esos físicos que llevan años luchando con ellas? Recuerdo haber leído aquella conferencia apasionante que dio E. Witten en el Fermilab. Su pasión y forma de encausar los problemas, sus explicaciones, llevaron a todos los presentes a hacerse fervientes y apasionados fans de aquella maravillosa teoría, la que llaman M. Todos hablaban subyugados mucho después de que el evento hubiera terminado. Según contó León Lederman, que asistió a aquella conferencia: “Yo nunca había visto nada igual, cuando Witten concluyó su charla, hubo muchos segundos de silencio, antes de los aplausos y, tal hecho, es muy significativo.

Claro que, a medida que la teoría ha ido topándose con unas matemáticas cada vez más difíciles y una proliferación de direcciones posibles, el progreso y la intensidad que rodeaban a las supercuerdas disminuyeron hasta un nivel más sensato, y ahora, sólo podemos seguir insistiendo y esperar para observar que nos puede traer el futuro de esta teoría que, es posible (y digo sólo posible) que se pueda beneficiar, de alguna manera, de las actividades del LHC que, en algunas de sus incursiones a ese mundo fantasmagórico de lo infinitesimal, podría -y digo podría- atisbar las sombras que puedan producir las supercuerdas.

No son pocos los físicos capaces que están empeñados en demostrar esa teoría. Por ejemplo, Físicos de SLAC desarrollan una prueba de marco de trabajo dependiente para la Teoría de Cuerdas Crítica. La Teoría de Cuerdas resuelve muchas de las cuestiones que arruinan la mente de los físicos, pero tiene un problema importante — no hay actualmente ningún método conocido para comprobarla y, si las energías requeridas para ello, es la de Planck  (1019 GeV), la cosa se pone fea, ya que, no está a nuestro alcance.

Está claro que, al tratar todas estas hipotéticas teorías, no pocos, han pensado que, algún día, se podría realizar el sueño de viajar por el Hiperespacio y, de esa manera, se habría logrado el medio para escapar de la Tierra cuando el momento fatídico, en el cual el Sol se convierta en gigante roja, no podamos seguir aquí.

Aunque muchas consecuencias de esta discusión son puramente teóricas, el viaje en el Hiperespacio (El Hiperespacio en ciencia ficción es una especie de región conectada con nuestro universo gracias a los agujeros de gusano, y a menudo sirve como atajo en los viajes interestelares para viajar más rápido que la luz), si llegara a ser posible, podría proporcionar eventualmente la aplicación más práctica de todas: salvar la vida inteligente, incluso a nosotros mismos de la muerte de este Universo cuando al final llegue el frío o el calor.

Resultado de imagen de Gravedad cuántica

        También en la teoría de supercuerdas está incluída ¡la Gravedad-Cuántica! Otra Ilusión

Esta nueva teoría de supercuerdas, tan prometedora del hiperespacio es un cuerpo bien definido de ecuaciones matemáticas, podemos calcular la energía exacta necesaria para doblar el espacio y el tiempo o para cerrar agujeros de Gusano que unan partes distantes de nuestro Universo.  Por desgracia, los resultados son desalentadores.  La energía requerida excede con mucho cualquier cosa que pueda  existir en nuestro planeta.  De hecho, la energía es mil billones de veces mayor que la energía de nuestros mayores colisionadores de átomos.  Debemos esperar siglos, o quizás milenios, hasta que nuestra civilización desarrolle la capacidad técnica de manipular el espacio-tiempo  utilizando la energía infinita que podría proporcionar un agujero negro para de esta forma poder dominar el Hiperespacio que, al parecer, es la única posibilidad que tendremos para escapar del lejano fin que se avecina. ¿Qué aún tardará mucho? Sí, pero el tiempo es inexorable y….,  la debacle llegará.

  Sí, hemos logrado mucho. Arriba tenemos la  imagen de la emisión en radio de un magnetar

No existen dudas al respecto, la tarea que nos hemos impuesto es descomunal, imposible para nuestra civilización de hoy pero, ¿y la de mañana, no habrá vencido todas las barreras? Creo que, el hombre es capaz de plasmar en hechos ciertos todos sus pensamientos e ideas, solo necesita tiempo y, como nos ha demostrado DA14 en el presente, ese tiempo que necesitamos, está en manos de la Naturaleza y, nosotros, nada podemos hacer si ella, no nos lo concede. Y, si por desventura es así, todo habrá podido ser, un inmenso sueño ilusionantede lo que podría haber sido si…

¿Dónde estará el límite? ¡No hay límites!

emilio silvera

Misterios de la Naturaleza

$
0
0

¿Por qué la materia no puede moverse más deprisa que la velocidad de la luz? Porque cuando se acerca a las velocidades relativistas, es decir, la velocidad de la luz en el vacío, c, la energía inercial se convierte en masa y, al llegar a c (299.792,458 m/s), sería infinita.

                                 Fotones que salen disparados a la velocidad de c. ¿Qué podría seguirlos?

Para contestar esta pregunta hay que advertir al lector que la energía suministrada a un cuerpo puede influir sobre él de distintas maneras. Si un martillo golpea a un clavo en medio del aire, el clavo sale despedido y gana energía cinética o, dicho de otra manera, energía de movimiento. Si el martillo golpea sobre un clavo, cuya punta está apoyada en una madera dura e incapaz de moverse, el clavo seguirá ganando energía, pero esta vez en forma de calor por rozamiento al ser introducido a la fuerza dentro de la madera.

Resultado de imagen de La Relatividad especialResultado de imagen de La Relatividad especialResultado de imagen de La Relatividad especial

                           El Tiempo se dilata o ralentiza cuando viajamos a la velocidad de la luz

Albert Einstein demostró en su teoría de la relatividad especial que la masa cabía contemplarla como una forma de energía (E = mc2.) Al añadir energía a un cuerpo, esa energía puede aparecer en la forma de masa o bien en otra serie de formas.

En condiciones ordinarias, la ganancia de energía en forma de masa es tan increiblemente pequeña que sería imposible medirla. Fue en el siglo XX (al observar partículas subatómicas que, en los grandes aceleradores de partículas, se movían a velocidades de decenas de miles de kilómetros por segundo) cuando se empezaron a encontrar aumentos de masa que eran suficientemente grandes para poder detectarlos. Un cuerpo que se moviera a unos 260.000 Km por segundo respecto a nosotros mostraría una masa dos veces mayor que cuando estaba en reposo (siempre respecto a nosotros).

                No un pulsar tampoco puede ser más rápido que la luz

La energía que se comunica a un cuerpo libre puede integrarse en él de dos maneras distintas:

  1. En forma de velocidad, con lo cual aumenta la rapidez del movimiento.
  2. En forma de masa, con lo cual se hace “más pesado”.

La división entre estas dos formas de ganancia de energía, tal como la medimos nosotros, depende en primer lugar de la velocidad del cuerpo (medida, una vez más, por nosotros).

Si el cuerpo se mueve a velocidades normales, prácticamente toda la energía se incorpora a él en forma de velocidad: se moverá más aprisa sin cambiar su masa.

A medida que aumenta la velocidad del cuerpo (suponiendo que se le suministra energía de manera constante) es cada vez menor la energía que se convierte en velocidad y más la que se transforma en masa. Observamos que, aunque el cuerpo siga moviéndose cada vez más rápido, el ritmo de aumento de velocidad decrece. Como contrapartida, notamos que gana más masa a un ritmo ligeramente mayor.

En gracia quizás podamos superarla pero, en velocidad…no creo, c es el tope que impone el Universo para la velocidad. No podremos viajar nunca a mayor velocidad ni transmitir mensajes superando a c.

Al aumentar aún más la velocidad y acercarse a los 299.792’458 Km/s, que es la velocidad de la luz en el vacío, casi toda la energía añadida entra en forma de masa. Es decir, la velocidad del cuerpo aumenta muy lentamente, pero la masa es la que sube a pasos agigantados. En el momento en que se alcanza la velocidad de la luz, toda la energía añadida se traduce en masa que, llegado a cierto límite, podría ser infinita y, como infinito no hay nada, nos quedamos con que nunca, nada, podrá sobrepasar esa velocidad.

El cuerpo no puede sobrepasar la velocidad de la luz porque para conseguirlo hay que comunicarle energía adicional, y a la velocidad de la luz toda esa energía, por mucha que sea, se convertirá en nueva masa, con lo cual la velocidad no aumentaría ni un ápice.

Todo esto no es pura teoría, sino que tal como ha sido comprobado, es la realidad de los hechos.

¿Que velocidad podría ser la de la luz en otros mundos paralelos que pudieran existir fuera de nuestro universo?

            Ninguna nave, por los medios convencionales, podrá nunca superar la velocidad de la luz

La velocidad de la luz es la velocidad límite en el universo. Cualquier cosa que intente sobrepasarla adquiriría una masa infinita, y, siendo así (que lo es), nuestra especie tendrá que ingeniarse otra manera de viajar para poder llegar a las estrellas, ya que, la velocidad de la luz nos exige mucho tiempo para alcanzar objetivos lejanos, con lo cual, el sueño de llegar a las estrellas físicamente hablando, está lejos, muy lejos. Es necesario encontrar otros caminos alejados de naves que, por muy rápida que pudieran moverse, nunca podrían transpasar la velocidad de la luz, el principio que impone la relatividad especial lo impide, y, siendo así, ¿cómo iremos?

La velocidad de la luz, por tanto, es un límite en nuestro universo; no se puede superar. Siendo esto así, el hombre tiene planteado un gran reto, no será posible el viaje a las estrellas si no buscamos la manera de esquivar este límite de la naturaleza, ya que las distancias que nos separan de otros sistemas solares son tan enormes que, viajando a velocidades por debajo de la velocidad de la luz, sería casi imposible alcanzar el destino deseado.

Resultado de imagen de La Galaxia más lejanaResultado de imagen de La Relatividad especial

De momento sólo con los Telescopios podemos llegar tan lejos. Ahí han captado la galaxia más lejana del Universo

Los científicos, físicos experimentales, tanto en el CERN como en el FERMILAB, aceleradores de partículas donde se estudian y los componentes de la materia haciendo que haces de protones o de muones, por ejemplo, a velocidades cercanas a la de la luz choquen entre sí para que se desintegren y dejen al descubierto sus contenidos de partículas aún más elementales. Pues bien, a estas velocidades relativistas cercanas a c (la velocidad de la luz), las partículas aumentan sus masas; sin embargo, nunca han logrado sobrepasar el límite de c, la velocidad máxima permitida en nuestro universo.

Es preciso ampliar un poco más las explicaciones anteriores que no dejan sentadas todas las cuestiones que el asunto plantea, y quedan algunas dudas que incitan a formular nuevas preguntas, como por ejemplo: ¿por qué se convierte la energía en masa y no en velocidad?, o ¿por qué se propaga la luz a 299.793 Km/s y no a otra velocidad?

Sí, la Naturaleza nos habla, simplemente nos tenemos que parar para poder oír lo que trata de decirnos y, entre las muchas cosas que nos dice, estarán esos mensajes que nos indican el camino por el que debemos coger para burlar a la velocidad de la luz, conseguir los objetivos y no vulnerar ningún principio físico impuesto por la Naturaleza.

La única respuesta que podemos dar hoy es que así, es el universo que nos acoge y las leyes naturales que lo rigen, donde estamos sometidos a unas fuerzas y unas constantes universales de las que la velocidad de la luz en el vacio es una muestra.

A velocidades grandes cercanas a la de la luz (velocidades relativistas) no sólo aumenta la masa del objeto que viaja, sino que disminuye también su longitud en la misma dirección del movimiento (contracción de Lorentz) y en dicho objeto y sus ocupantes – si es una nave – se retrasa al paso del tiempo, o dicho de otra manera, el tiempo allí transcurre más despacio.

A menudo se oye decir que las partículas no pueden moverse “más deprisa que la luz” y que la “velocidad de la luz” es el límite último de velocidad. Pero decir esto es decir las cosas a medias, porque la luz viaja a velocidades diferentes dependiendo del medio en el que se mueve. Donde más deprisa se mueve la luz es en el vacío: allí lo hace a 299.792’458 Km/s. Este sí es el límite último de velocidades que podemos encontrar en nuestro universo.

File:Military laser experiment.jpg

                                       Fotones emitidos por un rayo coherente conformado por un láser

Tenemos el ejemplo del fotón, la partícula mediadora de la fuerza electromagnética, un bosón sin masa que recorre el espacio a esa velocidad antes citada. Hace no muchos días se habló de la posibilidad de que unos neutrinos hubieran alcanzado una velocidad superior que la de la luz en el vacío y, si tal cosa fuera posible, o, hubiera pasado, habríamos de relagar parte de la Teoría de la Relatividad de Einstein que nos dice lo contrario y, claro, finalmente se descubrió que todo fue una falsa alarma generada por malas mediciones. Así que, la teoría del genio, queda intacta.

¡La Naturaleza! Hay que observarla para aprender de ella.

emilio silvera

Curvatura del Espacio Tiempo

$
0
0

Resultado de imagen de Curvatura del Espacio Tiempo

“La curvatura del espacio-tiempo es una de las principales consecuencias de la teoría de la relatividad general de acuerdo con la cual la gravedad es efecto o consecuencia de la geometría curva del espacio-tiempo.”

    Hay que entender que el espacio-tiempo es la única descripción en cuatro dimensiones del Universo en la que la posición de un objeto se especifica por tres coordenadas en el espacio y una en el tiempo.

          De acuerdo con la relatividad especial, no existe un tiempo absoluto que pueda ser medido con independencia del observador, de manera que eventos simultáneos para un observador ocurren en instantes diferentes vistos desde otro lugar.Curvatura del Espacio.

Resultado de imagen de El Tiempo puede ser medido de manera relativa

          El tiempo puede ser medido, por tanto, de manera relativa, como los son las posiciones en el espacio (Euclides) tridimensional, y esto puede conseguirse mediante el concepto de espacio-tiempo. La trayectoria de un objeto en el espacio-tiempo se denomina por el nombre de línea de Universo. La relatividad general, nos explica lo que es un espacio-tiempo curvo con las posiciones y movimientos de las partículas de materia.

          La curvatura del espacio tiempo es la propiedad del espacio-tiempo en la que las leyes familiares de la geometría no son aplicables en regiones donde los campos gravitatorios son intensos.

Resultado de imagen de Singularidad

En una singularidad , la densidad de materia es tanta que la fuerza de gravedad que allí se emite, paraliza el Tiempo y curva el espacio sobre sí mismo

          La relatividad general de Einstein, nos explica y demuestra que el espacio-tiempo está íntimamente relacionado con la distribución de materia en el Universo y, nos dice que, el espacio se curva en presencia de masas considerables como planetas, estrellas o Galaxias (entre otros).

          En un espacio de sólo dos dimensiones, como una lámina de goma plana, la geometría de Euclides se aplica de manera que la suma de los ángulos internos de un triángulo en la lámina es de 180º. Si colocamos un objeto masivo sobre la lámina de goma, la lámina se distorsionará y los caminos de los objetos que se muevan sobre ella se curvaran. Esto es en esencia, lo que ocurre en relatividad general.

Resultado de imagen de La paradoja de los gemelosResultado de imagen de La paradoja de los gemelos

  Si pudiéramos viajar a la velocidad de la luz se producirían fenómenos extraños en relación a los que no viajaran a esa velocidad.

          Los efectos de c (la velocidad de la luz en el espacio vacío). Recordad la paradoja de los gemelos: el primero hace un viaje a la velocidad de la luz hasta Alfa de Centauri y regresa, cuando baja de la nave espacial, tiene 8,6 años más que cuando partió de la Tierra. Sin embargo, el segundo gemelo que esperó en el planeta Tierra, el regreso de su hermano, era ya un viejo jubilado. El tiempo transcurrido había pasado más lento para el gemelo viajero. La velocidad relantiza el transcurrir del tiempo.

          Otra curiosidad de la relatividad especial es la que expresó Einstein mediante su famosa fórmula de E= mc2 que, nos viene a decir que masa y energía son dos aspectos de una misma cosa. Podríamos considerar que la masa (materia), es energía congelada. La bomba atómica demuestra la certeza de esta ecuación.

Resultado de imagen de La contracción de Lorentz

“Esquema sobre la contracción de Lorentz. (X′,cT′) representan las coordenadas de un observador en reposo a una barra, mientras que (X,cT) son las coordenadas de otro observador en movimiento con respecto a dicha barra. Por la naturaleza pseudoeuclídea del espacio-tiempo aun cuando el primer observador mide una longitud l, el segundo mide una longitud menor l/γ < l.”

Resultado de imagen de La contracción de Lorentz

Diagrama de Minkowski del experimento mental de Einstein sobre la contracción de la longitud (1911). Dos barras con longitud en reposo A ′ B ′ = A ″ B ″ = L …

          Hay otras implicaciones dentro de esta maravillosa teoría de la relatividad especial, ahí está presente también la contracción de Lorentz. Un objeto que se mueve a velocidad de cercana a c, se achata o contrae en el sentido de la marcha, y, además, a medida que se acerca a la velocidad de la luz (299.752,458 Km/s), su masa va aumentando y su velocidad disminuyendo.

          Así se ha demostrado con muones en los aceleradores de partículas que, lanzados a verlocidades relativista, han alcanzado una masa en 10 veces superior a la suya.

          Esto quiere decir que la fuerza de inercia que se le está transmitiendo a la nave (por ejemplo), cuando se acerca a la velocidad de la luz, se convierte en masa.

          Así queda demostrado que, masa y energía son dos aspectos de la misma cosa E=mc2.

          Seguiremos con otras cuestiones de interés.

    Hay que entender que el espacio-tiempo es la única descripción en cuatro dimensiones del Universo en la que la posición de un objeto se especifica por tres coordenadas en el espacio y una en el tiempo.

       Un nuevo modelo físico propio                          Einstein y sus paradojas sobre tiempo y espacio -

          De acuerdo con la relatividad especial, no existe un tiempo absoluto que pueda ser medido con independencia del observador, de manera que eventos simultáneos para un observador ocurren en instantes diferentes vistos desde otro lugar.

          El tiempo puede ser medido, por tanto, de manera relativa, como los son las posiciones en el espacio (Euclides) tridimensional, y esto puede conseguirse mediante el concepto de espacio-tiempo. La trayectoria de un objeto en el espacio-tiempo se denomina por el nombre de línea de Universo. La relatividad general, nos explica lo que es un espacio-tiempo curvo con las posiciones y movimientos de las partículas de materia.

Resultado de imagen de Imágenes de la curvatura del Espacio tiempo en presencia de grandes masas

En presencia de grandes masas (estrellas,mundos, galaxias…) El Espaciotiempo se transforma, la geometría del Universo la determina la fuerza de Gravedad.

          La curvatura del espacio tiempo es la propiedad del espacio-tiempo en la que las leyes familiares de la geometría no son aplicables en regiones donde los campos gravitatorios son intensos.

          La relatividad general de Einstein, nos explica y demuestra que el espacio-tiempo está íntimamente relacionado con la distribución de materia en el Universo y, nos dice que, el espacio se curva en presencia de masas considerables como planetas, estrellas o Galaxias (entre otros).

Resultado de imagen de Imágenes de la curvatura del Espacio tiempo en presencia de grandes masas

          En un espacio de sólo dos dimensiones, como una lámina de goma plana, la geometría de Euclides se aplica de manera que la suma de los ángulos internos de un triángulo en la lámina es de 180º. Si colocamos un objeto masivo sobre la lámina de goma, la lámina se distorsionará y los caminos de los objetos que se muevan sobre ella se curvaran. Esto es en esencia, lo que ocurre en relatividad general.

Resultado de imagen de Masa y energ´´ia dos aspectos de la misma cosaResultado de imagen de Masa y energ´´ia dos aspectos de la misma cosa

          Otra curiosidad de la relatividad especial es la que expresó Einstein mediante su famosa fórmula de E= mc2 que, nos viene a decir que masa y energía son dos aspectos de una misma cosa. Podríamos considerar que la masa (materia), es energía congelada. La bomba atómica demuestra la certeza de esta ecuación.

        TevatronElectrones

En el LHC haces de muones lanzados a velocidades relativistas, aumentaron su masa 10 veces

          Así se ha demostrado con muones en los aceleradores de partículas que, lanzados a velocidades relativista, han alcanzado una masa en 10 veces superior a la suya.

          Esto quiere decir que la fuerza de inercia que se le está transmitiendo a la nave (por ejemplo), cuando se acerca a la velocidad de la luz, se convierte en masa.

          Así queda demostrado que, masa y energía son dos aspectos de la misma cosa E=mc2.

          Seguiremos con otras cuestiones de interés.

emilio silvera


La Masa y la Energía ¿Qué son en realidad?

$
0
0
Resultado de imagen de El origen de la masa
Dibujo20131008 higgs discovery – four muons on atlas – two photons on cms – lhc -
“Aunque no del todo, entendemos sorprendentemente bien lo que son las cosas, y cómo funcionan. Me refiero sólo a su funcionamiento a nivel microscópico, claro está. Elementales son aquellas partículas que no están compuestas -que sepamos- de otras aún más elementales. El Higgs, que tanto revuelo está armando, no es una partícula como otra cualquiera: es la pieza más codiciada, como hemos de ver.Las partículas y su comportamiento (las interacciones entre ellas) están descritas por el Modelo Estándar. El modelo es como el ajedrez: diferentes piezas (las partículas) y unas pocas reglas de juego. Un sinfín de posibilidades (las propiedades de todo lo que sabemos que existe) podrían en principio deducirse del comportamiento de unas pocas piezas, también como en el ajedrez.”
Alvaro de Rujula
Resultado de imagen de El LHC busca el Bosón de HiggsResultado de imagen de El LHC busca el Bosón de HiggsResultado de imagen de El LHC busca el Bosón de HiggsResultado de imagen de El LHC busca el Bosón de Higgs

Todos los intentos y los esfuerzos por hallar una pista del cuál era el origen de la masa fallaron.  Feynman escribió su famosa pregunta: “¿Por qué pesa el muón?”.  Ahora, por lo menos, tenemos una respuesta parcial, en absoluto completa.  Una voz potente y ¿segura? nos dice: “!Higgs¡” Durante más de 60 años los físicos experimentadores se rompieron la cabeza con el origen de la masa, y ahora el campo Higgs presenta el problema en un contexto nuevo; no se trata sólo del muón. Proporciona, por lo menos, una fuente común para todas las masas. La nueva pregunta feynmaniana podría ser: ¿Cómo determina el campo de Higgs la secuencia de masas, aparentemente sin patrón, que da a las partículas de la materia?

La variación de la masa con el estado de movimiento, el cambio de masa con la configuración del sistema y el que algunas partículas (el fotón seguramente y los neutrinos posiblemente) tengan masa en reposo nula son tres hechos que ponen entre dicho que el concepto de masa sea un atributo fundamental de la materia.  Habrá que recordar aquel cálculo de la masa que daba infinito y nunca pudimos resolver; los físicos sólo se deshicieron de él “renormalizándolo”, ese truco matemático que emplean cuando no saben encontrar la respuesta al problema planteado.

Ese es el problema de trasfondo con el que tenemos que encarar el problema de los quarks, los leptones y los vehículos de las fuerzas, que se diferencian por sus masas.  Hace que la historia de Higgs se tenga en pie: la masa no es una propiedad intrínseca de las partículas, sino una propiedad adquirida por la interacción de las partículas y su entorno.

La idea de que la masa no es intrínseca como la carga o el espín resulta aún más plausible por la idílica idea de que todos los quarks y fotones tendrían masa cero. En ese caso, obedecerían a una simetría satisfactoria, la quiral, en laque los espines estarían asociados para siempre con su dirección de movimiento. Pero ese idilio queda oculto por el fenómeno de Higgs.

¡Ah, una cosa más! Hemos hablado de los bosones gauge y de su espín de una unidad; hemos comentado también las partículas fermiónicas de la materia (espin de media unidad). ¿Cuál es el pelaje de Higgs? Es un bosón de espin cero.  El espín supone una direccionalidad en el espacio, pero el campo de Higgs da masa a los objetos dondequiera que estén y sin direccionalidad.  Al Higgs se le llama a veces “bosón escalar” [sin dirección] por esa razón.

La interacción débil, recordareis, fue inventada por E. Fermin para describir la desintegración radiactiva de los núcleos, que era básicamente un fenómeno de poca energía, y a medida que la teoría de Fermi se desarrolló, llegó a ser muy precisa a la hora de predecir un enorme número de procesos en el dominio de energía de los 100 MeV.  Así que ahora, con las nuevas tecnologías y energías del LHC, las esperanzas son enormes para, por fin, encontrar el bosón Higgs origen de la masa… y algunas cosas más.

Resultado de imagen de Fabiola Gianotti

                        Fabiola Gianotti, portavoz del experimento ATLAS, ofrece algunos avances:

“En nuestros datos observamos claros signos de una nueva partícula compatible con la teoría de Higgs, con un nivel aproximado de 5 sigma [99,977% de eficiencia], en la región de masa alrededor de los 126 GeV. El increíble rendimiento del LHC y el ATLAS y los enormes esfuerzos de mucha gente nos han traído a este excitante punto, pero hace falta un poco más de tiempo para preparar estos resultados cara a su publicación.”

 

El Modelo Estándar describe las partículas de todo cuanto nos rodea, incluso de nosotros mismos. Toda la materia que podemos observar, sin embargo, no parece significar más que el 4% del total. Higgs podría ser el puente para comprender el 96% del universo que permanece oculto.

El 4 de julio de 2012 se anunció el descubrimiento de un nuevo bosón. Punto. En diciembre de 2012 se empezó a hablar de “un” Higgs (en lugar de “el” Higgs), pero oficialmente seguía siendo un nuevo bosón. ¿Importa el nombre? El Premio Nobel de Física para el bosón de Higgs sólo será concedido cuando el CERN afirme con claridad y rotundidad que se ha descubierto “el” Higgs, si el CERN es conservador, la Academia Sueca lo es aún más. Sin embargo, el rumor es que quizás baste con que el CERN diga que se ha descubierto “un” Higgs.

¿Por qué, a pesar de todas las noticias surgidas desde el CERN, creo que no ha llegado el momento de celebrarlo? ¿Es acaso el Higgs lo encontrado?

Hay que responder montones de preguntas.  ¿Cuáles son las propiedades de las partículas de Higgs y, lo que es más importante, cuál es su masa? ¿Cómo reconoceremos una si nos la encontramos en una colisión de LHC? ¿Cuántos tipos hay? ¿Genera el Higgs todas las masas, o solo las hace incrementarse? ¿Y, cómo podemos saber más al respecto? También a los cosmólogos les fascina la idea de Higgs, pues casi se dieron de bruces con la necesidad de tener campos escalares que participasen en el complejo proceso de la expansión del Universo, añadiendo, pues, un peso más a la carga que ha de soportar el Higgs.

El campo de Higgs, tal y como se lo concibe ahora, se puede destruir con una energía grande, o temperaturas altas. Estas generan fluctuaciones cuánticas que neutralizan el campo de Higgs. Por lo tanto, el cuadro que las partículas y la cosmología pintan juntas de un universo primitivo puso y de resplandeciente simetría es demasiado caliente para Higgs. Pero cuando la temperatura cae bajo los 10’5grados kelvin o 100 GeV, el Higgs empieza a actuar y hace su generación de masas.  Así por ejemplo, antes de Higgs teníamos unos W, Z y fotones sin masa y la fuerza electrodébil unificada.

El Universo se expande y se enfría, y entonces viene el Higgs (que engorda los W y Z, y por alguna razón ignora el fotón) y de ello resulta que la simetría electrodébil se rompe. Tenemos entonces una interacción débil, transportada por los vehículos de la fuerza W+, W-, Z0, y por otra parte una interacción electromagnética, llevada por los fotones. Es como si para algunas partículas del campo de Higgs fuera una especie de aceite pesado a través del que se moviera con dificultad y que las hiciera parecer que tienen mucha masa. Para otras partículas, el Higgs es como el agua, y para otras, los fotones y quizá los neutrinos, es invisible.

Para cada suceso, la línea del haz es el eje común de los cilindros de malla de alambre ECAL y HCAL. ¿Cuál es el mejor candidato W? el mejor candidato Z? En cada evento, ¿dónde ocurrió la colisión y el decaimiento de las partículas producidas? Lo cierto es que, en LHC se hacen toda clase de pruebas para saber del mundo de las partículas, de dónde vienen y hacia dónde se dirigen y, el Bosón de Higgs, es una asignatura pendiente a pesar de las noticias y de los premios

De todas las maneras, es tanta la ignorancia que tenemos sobre el origen de la masa que, nos agarramos como a un clavo ardiendo el que se ahoga, en este caso, a la partícula de Higgs que viene a ser una de las soluciones que le falta al Modelo Estándar para que todo encaje con la teoría.

¡Ya veremos en que termina todo esto! Dicen que descubrieron el famoso Bosón pero… Y, aunque el que suena siempre es Higgs, lo cierto es que los autores de la teoría del “Bosón de Higgs”, son tres a los que se ha concedido, junto al CERN, el Premio Principe de Asturias. Peter Ware Higgs —el primero en predecir la existencia del bosón— junto a los físicos François Englert, y el belga Robert Brout—fallecido en el año 2011— y que no ha podido disfrutar del Nóbel.

Peter Higgs, de la Universidad de Edimburgo, introdujo la idea en la física de partículas.  La utilizaron los teóricos Steven Weinberg y V. Salam, que trabajaban por separado, para comprender como se convertía la unificada y simétrica fuerza electrodébil, transmitida por una feliz familia de cuatro partículas mensajeras de masa nula, en dos fuerzas muy diferentes: la QED con un fotón carente de masa y la interacción débil con sus W+, Wy Z0 de masa grande.  Weinberg y Salam se apoyaron en los trabajos previos de Sheldon Glasgow, quien tras los pasos de Julian Schwinger, sabía sólo que había una teoría electrodébil unificada, coherente, pero no unió todos los detalles. Y estaban Jeffrey Goldstone y Martines Veltman y Gerard’t Hooft.  También hay otras a los que había que mencionar, pero lo que siempre pasa, quedan en el olvido de manera muy injusta.  Además, ¿Cuántos teóricos hacen falta para encender una bombilla?

La verdad es que, casi siempre, han hecho falta muchos.  Recordemos el largo recorrido de los múltiples detalle sueltos y físicos que prepararon el terreno para que, llegara Einstein y pudiera, uniéndolo todo, exponer su teoría relativista.

Sobre la idea de Peter Higgs, Veltman, uno de sus arquitectos, dice que es una alfombra bajo la que barremos nuestra ignorancia.  Glasgow es menos amable y lo llamó retrete donde echamos las incoherencias de nuestras teorías actuales.  La objeción principal: que no teníamos la menor prueba experimental que ahora parece que va asomando la cabeza en el LHC.

Esperemos que la partícula encontrada, el bosón hallado, sea en realidad el Higgs dador de masa a las demás partículas pero… ¡Cabe la posibilidad de que sólo sea el hermano menor! de la familia. El modelo estándar es lo bastante fuerte para decirnos que la partícula de Higgs de menor masa (podría haber muchas) debe “pesar” menos de 1 TeV. ¿Por qué? Si tiene más de 1 TeV, el modelo estándar se vuelve incoherente y tenemos la crisis de la unitariedad.

Después de todo esto, tal como lo están planteando los del CERN,  se puede llegar a la conclusión de que, el campo de Higgs, el modelo estándar y nuestra idea de cómo se hizo el Universo dependen de que se encuentre el Bosón de Higgs.  Y ahora, por fin, el mayor Acelerador del mundo, el LHC, nos dice que el Bosón ha sido encontrado y las pruebas tienen una fiabilidad enorme.

Resultado de imagen de Buscando teor

    Los teóricos imaginan y conjeturan sobre teorías que deben ser refrendadas por los experimentadores

¡La confianza en nosotros mismos, no tiene límites! Pero el camino no ha sido recorrido por completo y quedan algunos tramos que tendremos que andar para poder, al fín, dar una explicación más completa, menos oscura y neblinosa que lo que hasta el momento tenemos, toda vez que, del Bosón de Higgs y de su presencia veráz, dependen algunos detalles de cierta importancia para que sean confirmados nuestros conceptos de lo que es la masa y, de paso, la materia.

¿Pasará igual con las cuerdas?

emilio silvera

Fuente: León Lederman

Velocidades inimaginables

$
0
0

En el centro del átomo se encuentra un pequeño grano compacto aproximadamente 100.000 veces más pequeño que el propio átomo: el núcleo atómico. Su masa, e incluso más aún su carga eléctrica, determinan las propiedades del átomo del cual forma parte. Debido a la solidez del núcleo parece que los átomos, que dan forma a nuestro mundo cotidiano, son intercambiables entre sí, e incluso cuando interaccionan entre ellos para formar sustancias químicas (los elementos). Pero el núcleo, a pesar de ser tan sólido, puede partirse. Si dos átomos chocan uno contra el otro con gran velocidad podría suceder que los núcleos llegaran a chocar entre sí y entonces, o bien se rompen en trozos, o se funden liberando en el proceso partículas subnucleares. La nueva física de la primera mitad del siglo XX estuvo dominada por los nuevos acertijos que estas partículas planteaban.

Resultado de imagen de Las cuatro fuerzas fundamentales

Pero tenemos la mecánica cuántica; ¿es que no es aplicable siempre?, ¿cuál es la dificultad? Desde luego, la mecánica cuántica es válida para las partículas subatómicas, pero hay más que eso. Las fuerzas con que estas partículas interaccionan y que mantienen el núcleo atómico unido son tan fuertes que las velocidades a las que tienen que moverse dentro y fuera del núcleo están cerca de la velocidad de la luz, c, que es de 299.792’458 Km/s. Cuando tratamos con velocidades tan altas se necesita una segunda modificación a las leyes de la física del siglo XIX; tenemos que contar con la teoría de la relatividad especial de Einstein.

Esta teoría también fue el resultado de una publicación de Einstein de 1905. en esta teoría quedaron sentadas las bases de que el movimiento y el reposo son conceptos relativos, no son absolutos, como tampoco habrá un sistema de referencia absoluto con respecto al cual uno pueda medir la velocidad de la luz.

Resultado de imagen de La relatividad Especial

Pero había más cosas que tenían que ser relativas. En este teoría, la masa y la energía también dependen de la velocidad, como lo hacen la intensidad del campo eléctrico y del magnético. Einstein descubrió que la masa de una partícula es siempre proporcional a la energía que contienen, supuesto que se haya tenido en cuenta una gran cantidad de energía en reposo de una partícula cualquiera, como se denota a continuación:

Resultado de imagen de La relatividad Especial y la velocidad de la luz

E = mc2

Como la velocidad de la luz es muy grande, esta ecuación sugiere que cada partícula debe almacenar una cantidad enorme de energía, y en parte esta predicción fue la que hizo que la teoría de la relatividadtuviese tanta importancia para la física (¡y para todo el mundo!). Para que la teoría de la relatividadtambién sea autoconsistente tiene que ser holista, esto es, que todas las cosas y todo el mundo obedezcan a las leyes de la relatividad. No son sólo los relojes los que se atrasan a grandes velocidades, sino que todos los procesos animados se comportan de la forma tan inusual que describe esta teoría cuando nos acercamos a la velocidad de la luz. El corazón humano es simplemente un reloj biológico y latirá a una velocidad menor cuando viaje en un vehículo espacial a velocidades cercanas a la de la luz. Este extraño fenómeno conduce a lo que se conoce como la “paradoja de los gemelos”, sugerida por Einstein, en la que dos gemelos idénticos tienen diferente edad cuando se reencuentran después de que uno haya permanecido en la Tierra mientras que el otro ha viajado a velocidades relativistas.

Einstein comprendió rápidamente que las leyes de la gravedad también tendrían que ser modificadas para que cumplieran el principio relativista.

Resultado de imagen de La relatividad Especial y la velocidad de la luz

Para poder aplicar el principio de la relatividad a la fuerza gravitatoria, el principio tuvo que ser extendido de la siguiente manera: no sólo debe ser imposible determinar la velocidad absoluta del laboratorio, sino que también es imposible distinguir los cambios de velocidad de los efectos de una fuerza gravitatoria.

Einstein comprendió que la consecuencia de esto era que la gravedad hace al espacio-tiempo lo que la humedad a una hoja de papel: deformar la superficie con desigualdades que no se pueden eliminar. Hoy en día se conocen muy bien las matemáticas de los espacios curvos, pero en el época de Einstein el uso de estas nociones matemáticas tan abstractas para formular leyes físicas era algo completamente nuevo, y le llevó varios años encontrar la herramienta matemática adecuada para formular su teoría general de la relatividad que describe cómo se curva el espacio en presencia de grandes masas como planetas y estrellas.

Einstein tenía la idea en su mente desde 1907 (la relatividad especial la formuló en 1905), y se pasó 8 años buscando las matemáticas adecuadas para su formulación.

Resultado de imagen de El Tensor métrico de Riemann

Leyendo el material enviado por un amigo al que pidió ayuda, Einstein quedó paralizado. Ante él, en la primera página de una conferencia dada ante el Sindicato de Carpinteros, 60 años antes por un tal Riemann, tenía la solución a sus desvelos: el tensor métrico de Riemann, que le permitiría utilizar una geometría espacial de los espacios curvos que explicaba su relatividad general.

No está mal que en este punto recordemos la fuerza magnética y gravitatoria que nos puede ayudar a comprender mejor el comportamiento de las partículas subatómicas.

El electromagnetismo, decíamos al principio, es la fuerza con la cual dos partículas cargadas eléctricamente se repelen (si sus cargas son iguales) o se atraen (si tienen cargas de signo opuesto).

Resultado de imagen de Las partículas cargadas en movimiento generan un campo magnético

La interacción magnética es la fuerza que experimenta una partícula eléctricamente cargada que se mueve a través de un campo magnético. Las partículas cargadas en movimiento generan un campo magnético como, por ejemplo, los electrones que fluyen a través de las espiras de una bobina.

Las fuerzas magnéticas y eléctricas están entrelazadas. En 1873, James Clerk Maxwell consiguió formular las ecuaciones completas que rigen las fuerzas eléctricas y magnéticas, descubiertas experimentalmente por Michael Faraday. Se consiguió la teoría unificada del electromagnetismo que nos vino a decir que la electricidad y el magnetismo eran dos aspectos de una misma cosa.

cap11.jpg

¿Qué dicen?


La electricidad y el magnetismo no pueden desvanecerse sin más. Una región de un campo eléctrico girando crea un campo magnético perpendicular al giro. Una región de un campo magnético girando crea un campo eléctrico perpendicular al giro, pero en el sentido opuesto.

¿Por qué es importante?


Fue la primera unificación importante de fuerzas físicas, mostrando que la electricidad y el magnetismo están íntimamente interrelacionados, o, son dos aspectos diferentes de la misma cosa.

¿Qué provocó?


La predicción de que las ondas electromagnéticas existen, desplazándose a la velocidad de la luz, de modo que la propia luz es una de dichas ondas. Esto motivó la invención de la radio, el radar, la televisión, las conexiones inalámbricas para los ordenadores y la mayoría de las comunicaciones modernas.

La interacción es universal, de muy largo alcance (se extiende entre las estrellas), es bastante débil. Su intensidad depende del cociente entre el cuadrado de la carga del electrón y 2hc (dos veces la constante de Planck por la velocidad de la luz). Esta fracción es aproximadamente igual a 1/137’036…, o lo que llamamos Alfa  (α) y se conoce como constante de estructura fina.

En general, el alcance de una interacción electromagnética es inversamente proporcional a la masa de la partícula mediadora, en este caso, el fotón, sin masa.

También antes hemos comentado sobre la interacción gravitatoria de la que Einstein descubrió su compleja estructura y la expuso al mundo en 1915 con el nombre de teoría general de la relatividad, y la relacionó con la curvatura del espacio y el tiempo. Sin embargo, aún no sabemos cómo se podrían reconciliar las leyes de la gravedad y las leyes de la mecánica cuántica (excepto cuando la acción gravitatoria es suficientemente débil).

https://nadamasquelaverdad.files.wordpress.com/2011/01/universo-vivo.png

La teoría de Einstein nos habla de los planetas y las estrellas del cosmos. La teoría de Planck, Heisemberg, Schrödinger, Dirac, Feynman y tantos otros, nos habla del comportamiento del átomo, del núcleo, de las partículas elementales en relación a estas interacciones fundamentales. La primera se ocupa de los cuerpos muy grandes y de los efectos que causan en el espacio y en el tiempo; la segunda de los cuerpos muy pequeños y de su importancia en el universo atómico. Cuando hemos tratado de unir ambos mundos se produce una gran explosión de rechazo. Ambas teorías son (al menos de momento) irreconciliables.

  • La interacción gravitatoria actúa exclusivamente sobre la masa de una partícula.
  • La gravedad es de largo alcance y llega a los más lejanos confines del universo conocido.
  • Es tan débil que, probablemente, nunca podremos detectar esta fuerza de atracción gravitatoria entre dos partículas elementales. La única razón por la que podemos medirla es debido a que es colectiva: todas las partículas (de la Tierra) atraen a todas las partículas (de nuestro cuerpo) en la misma dirección.

Resultado de imagen de El hipotético gravitón

El gravitón hace tiempo que se ríe de nosotros…y se oculta donde no lo podamos ver

La partícula mediadora es el hipotético gravitón. Aunque aún no se ha descubierto experimentalmente, sabemos lo que predice la mecánica cuántica: que tiene masa nula y espín 2.

La ley general para las interacciones es que, si la partícula mediadora tiene el espín par, la fuerza entre cargas iguales es atractiva y entre cargas opuestas repulsiva. Si el espín es impar (como en el electromagnetismo) se cumple a la inversa.

Pero antes de seguir profundizando en estas cuestiones hablemos de las propias partículas subatómicas, para lo cual la teoría de la relatividad especial, que es la teoría de la relatividad sin fuerza gravitatoria, es suficiente.

Resultado de imagen de El núcleo atómico y su contenidoResultado de imagen de El núcleo atómico y su contenido

Si viajamos hacia lo muy pequeño tendremos que ir más allá de los átomos, que son objetos voluminosos y frágiles comparados con lo que nos ocupará a continuación: el núcleo atómico y lo que allí se encuentra. Los electrones, que ahora vemos “a gran distancia” dando vueltas alrededor del núcleo, son muy pequeños y extremadamente robustos. El núcleo está constituido por dos especies de bloques: protones y neutrones. El protón (del griego πρώτος, primero) debe su nombre al hecho de que el núcleo atómico más sencillo, que es el hidrógeno, está formado por un solo protón. Tiene una unidad de carga positiva. El neutrónrecuerda al protón como si fuera su hermano gemelo: su masa es prácticamente la misma, su espín es el mismo, pero en el neutrón, como su propio nombre da a entender, no hay carga eléctrica; es neutro.

La masa de estas partículas se expresa en una unidad llamada mega-electrón-voltio o MeV, para abreviar. Un MeV, que equivale a 106 electrón-voltios, es la cantidad de energía de movimiento que adquiere una partícula con una unidad de carga (tal como un electrón o un protón) cuando atraviesa una diferencia de potencial de 106 (1.000.000) voltios. Como esta energía se transforma en masa, el MeV es una unidad útil de masa para las partículas elementaccles.

Resultado de imagen de El núcleo atómico

La mayoría de los núcleos atómicos contienen más neutrones que protones. Los protones se encuentran tan juntos en el interior de un núcleo tan pequeño que se deberían repeles entre sí fuertemente, debido a que tienen cargas eléctricas del mismo signo. Sin embargo, hay una fuerza que los mantiene unidos estrechamente y que es mucho más potente e intensa que la fuerza electromagnética: la fuerza o interacción nuclear fuerte, unas 102 veces mayor que la electromagnética, y aparece sólo entre hadronespara mantener a los nucleones confinados dentro del núcleo. Actúa a una distancia tan corta como 10-15 metros, o lo que es lo mismo, 0’000000000000001 metros.

La interacción fuerte está mediada por el intercambio de mesones virtuales, 8 gluones que, como su mismo nombre indica (glue en inglés es pegamento), mantiene a los protones y neutrones bien sujetos en el núcleo, y cuanto más se tratan de separar, más aumenta la fuerza que los retiene, que crece con la distancia, al contrario que ocurre con las otras fuerzas.

Resultado de imagen de La luz es una manifestación del fenómeno electromagnético y está cuantizada en “fotones”, que se comportan generalmente como los mensajeros de todas las interacciones electromagnéticas

La luz es una manifestación del fenómeno electromagnético y está cuantizada en “fotones”, que se comportan generalmente como los mensajeros de todas las interacciones electromagnéticas. Así mismo, como hemos dejado reseñado en el párrafo anterior, la interacción fuerte también tiene sus cuantos (los gluones). El físico japonés Hideki Yukawa (1907 – 1981) predijo la propiedad de las partículas cuánticas asociadas a la interacción fuerte, que más tarde se llamarían piones. Hay una diferencia muy importante entre los piones y los fotones: un pión es un trozo de materia con una cierta cantidad de “masa”. Si esta partícula está en reposo, su masa es siempre la misma, aproximadamente 140 MeV, y si se mueve muy rápidamente, su masa parece aumentar en función E = mc2. Por el contrario, se dice que la masa del fotónen reposo es nula. Con esto no decimos que el fotón tenga masa nula, sino que el fotón no puede estar en reposo. Como todas las partículas de masa nula, el fotón se mueve exclusivamente con la velocidad de la luz, 299.792’458 Km/s, una velocidad que el pión nunca puede alcanzar porque requeriría una cantidad infinita de energía cinética. Para el fotón, toda su masa se debe a su energía cinética.

Resultado de imagen de trazas de luz y fotones en los rayos cósmicos

Los físicos experimentales buscaban partículas elementales en las trazas de los rayos cósmicos que pasaban por aparatos llamados cámaras de niebla. Así encontraron una partícula coincidente con la masa que debería tener la partícula de Yukawa, el pión, y la llamaron mesón (del griego medio), porque su masa estaba comprendida entre la del electrón y la del protón. Pero detectaron una discrepancia que consistía en que esta partícula no era afectada por la interacción fuerte, y por tanto, no podía ser un pión. Actualmente nos referimos a esta partícula con la abreviatura μ y el nombre de muón, ya que en realidad era un leptón, hermano gemelo del electrón, pero con 200 veces su masa.

Antes de seguir veamos las partículas elementales de vida superior a 10-20 segundos que eran conocidas en el año 1970.

Nombre Símbolo Masa (MeV) Carga Espín Vida media (s)
Fotón γ 0 0 1
Leptones (L = 1, B = 0)
Electrón e- 0’5109990 ½
Muón μ- 105’6584 ½ 2’1970 × 10-6
Tau τ
Neutrino electrónico νe ~ 0 0 ½ ~ ∞
Neutrino muónico νμ ~ 0 0 ½ ~ ∞
Neutrino tauónico ντ ~ 0 0 ½ ~ ∞
Mesones (L = 0, B = 0)
Pión + π+ 139’570 2’603 × 10-8
Pión – π- 139’570 2’603 × 10-8
Pión 0 π0 134’976 0’84 × 10-16
Kaón + k+ 493’68 1’237 × 10-8
Kaón – k- 493’68 1’237 × 10-8
Kaón largo kL 497’7 5’17 × 10-8
Kaón corto kS 497’7 0’893 × 10-10
Eta η 547’5 0 0 5’5 × 10-19
Bariones (L = 0, B = 1)
Protón p 938’2723 + ½
Neutrón n 939’5656 0 ½ 887
Lambda Λ 1.115’68 0 ½ 2’63 × 10-10
Sigma + Σ+ 1.189’4 + ½ 0’80 × 10-10
Sigma – Σ- 1.1974 ½ 7’4× 10-20
Sigma 0 Σ0 0 ½ 1’48 × 10-10
Ksi 0 Ξ0 1.314’9 0 ½ 2’9 × 10-10
Ksi – Ξ- 1.321’3 ½ 1’64 × 10-10
Omega – Ω- 1.672’4 0’82 × 10-10

Resultado de imagen de Para cada leptón y cada barión existe la correspondiente antipartícula, con exactamente las mismas propiedades a excepción de la carga que es la contraria

Para cada leptón y cada barión existe la correspondiente antipartícula, con exactamente las mismas propiedades a excepción de la carga que es la contraria. Por ejemplo, el antiprotón se simboliza con  y el electrón con e+. Los mesones neutros son su propia antipartícula, y el π+ es la antipartícula del π-, al igual que ocurre con k+ y k-. El símbolo de la partícula es el mismo que el de su antipartícula con una barra encima. Las masas y las vidas medias aquí reflejadas pueden estar corregidas en este momento, pero de todas formas son muy aproximadas.

Los símbolos que se pueden ver algunas veces, como s (extrañeza) e i (isoespín) están referidos a datos cuánticos que afectan a las partículas elementales en sus comportamientos.

Debo admitir que todo esto tiene que sonar algo misterioso. Es difícil explicar estos temas por medio de la simple palabra escrita sin emplear la claridad que transmiten las matemáticas, lo que, por otra parte, es un mundo secreto para el común de los mortales, y ese lenguaje es sólo conocido por algunos privilegiados que, mediante un sistema de ecuaciones pueden ver y entender de forma clara, sencilla y limpia, todas estas complejas cuestiones.

Resultado de imagen de el Espín de las partículas

Si hablamos del espín (o, con más precisión, el momento angular, que es aproximadamente la masa por el radio por la velocidad de rotación) se puede medir como un múltiplo de la constante de Planckh, dividido por . Medido en esta unidad y de acuerdo con la mecánica cuántica, el espín de cualquier objeto tiene que ser o un entero o un entero más un medio. El espín total de cada tipo de partícula – aunque no la dirección del mismo – es fijo.

El electrón, por ejemplo, tiene espín ½. Esto lo descubrieron dos estudiantes holandeses, Samuel Gondsmit (1902 – 1978) y George Uhlenbeck (1900 – 1988), que escribieron sus tesis conjuntamente sobre este problema en 1972. Fue una idea audaz que partículas tan pequeñas como los electronespudieran tener espín, y de hecho, bastante grande. Al principio, la idea fue recibida con escepticismo porque la “superficie del electrón” se tendría que mover con una velocidad 137 veces mayor que la de la luz, lo cual va en contra de la teoría de la relatividad general en la que está sentado que nada en el universo va más rápido que la luz, y por otra parte, contradice E=mc2, y el electrón pasada la velocidad de la luz tendría una masa infinita.

Hoy día, sencillamente, tal observación es ignorada, toda vez que el electrón carece de superficie.

Resultado de imagen de Los bosones tienen espín entero

Las partículas con espín entero se llaman bosones, y las que tienen espín entero más un medio se llaman fermiones. Consultado los valores del espín en la tabla anterior podemos ver que los leptones y los bariones son fermiones, y que los mesones y los fotones son bosones. En muchos aspectos, los fermionesse comportan de manera diferente de los bosones. Los fermiones tienen la propiedad de que cada uno de ellos requiere su propio espacio: dos fermiones del mismo tipo no pueden ocupar o estar en el mismo punto, y su movimiento está regido por ecuaciones tales que se evitan unos a otros. Curiosamente, no se necesita ninguna fuerza para conseguir esto. De hecho, las fuerzas entre los fermiones pueden ser atractivas o repulsivas, según las cargas. El fenómeno por el cual cada fermión tiene que estar en un estado diferente se conoce como el principio de exclusión de Pauli. Cada átomo está rodeado de una nube de electrones, que son fermiones (espín ½). Si dos átomos se aproximan entre sí, los electrones se mueven de tal manera que las dos nubes se evitan una a otra, dando como resultado una fuerza repulsiva. Cuando aplaudimos, nuestras manos no se atraviesan pasando la uno a través de la otra. Esto es debido al principio de exclusión de Pauli para los electrones de nuestras manos que, de hecho, los de la izquierda rechazan a los de la derecha.

Resultado de imagen de láser

En contraste con el característico individualismo de los fermiones, los bosones se comportan colectivamente y les gusta colocarse todos en el mismo lugar. Un láser, por ejemplo, produce un haz de luz en el cual muchísimos fotones llevan la misma longitud de onda y dirección de movimiento. Esto es posible porque los fotones son bosones.

Cuando hemos hablado de las fuerzas fundamentales que, de una u otra forma, interaccionan con la materia, también hemos explicado que la interacción débil es la responsable de que muchas partículas y también muchos núcleos atómicos exóticos sean inestables. La interacción débil puede provocar que una partícula se transforme en otra relacionada, por emisión de un electrón y un neutrino. Enrico Fermi, en 1934, estableció una fórmula general de la interacción débil, que fue mejorada posteriormente por George Sudarshan, Robert Marschak, Murray Gell-Mann, Richard Feynman y otros. La fórmula mejorada funciona muy bien, pero se hizo evidente que no era adecuada en todas las circunstancias.

Resultado de imagen de Interacción débil

¿Cuál es la diferencia entre el protón y el neutrón?

Basta con cambiar un quark tipo U a uno tipo D.

Pues justamente esto es lo que ocurre en la naturaleza cuando entra en acción la fuerza nuclear débil. Un quark tipo U cambia a uno tipo D por medio de la interacción débil así

Las otras dos partículas que salen son un anti-electrón y un neutrino.

Este mismo proceso es el responsable del decaimiento radiactivo de algunos nñucleos atómicos. Cuando un neutrón se convierte en un protón en el decaimiento radiactivo de un núcleo, aparece un electrón y un neutrino. Este es el origen de la radiación beta (electrónes).

En 1970, de las siguientes características de la interacción débil sólo se conocían las tres primeras:

  • La interacción actúa de forma universal sobre muchos tipos diferentes de partículas y su intensidad es aproximadamente igual para todas (aunque sus efectos pueden ser muy diferentes en cada caso). A los neutrinos les afecta exclusivamente la interacción débil.
  • Comparada con las demás interacciones, ésta tiene un alcance muy corto.
  • La interacción es muy débil. Consecuentemente, los choques de partículas en los cuales hay neutrinos involucrados son tan poco frecuentes que se necesitan chorros muy intensos de neutrinospara poder estudiar tales sucesos.
  • Los mediadores de la interacción débil, llamados W+, W- y Z0, no se detectaron hasta la década de 1980. al igual que el fotón, tienen espín 1, pero están eléctricamente cargados y son muy pesados (esta es la causa por la que el alcance de la interacción es tan corto). El tercer mediador, Z0, que es responsable de un tercer tipo de interacción débil que no tiene nada que ver con la desintegración de las partículas llamada “corriente neutra”, permite que los neutrinos puedan colisionar con otras partículas sin cambiar su identidad.

Resultado de imagen de electrodébil de Weinberg-Salam

A partir de 1970, quedó clara la relación de la interacción débil y la electromagnética (electrodébil de Weinberg-Salam).

La interacción fuerte (como hemos dicho antes) sólo actúa entre las partículas que clasificamos en la familia llamada de los hadrones, a los que proporciona una estructura interna complicada. Hasta 1972 sólo se conocían las reglas de simetría de la interacción fuerte y no fuimos capaces de formular las leyes de la interacción con precisión.

Como apuntamos, el alcance de esta interacción no va más allá del radio de un núcleo atómico ligero (10-13cm aproximadamente).

Fuerza fuerte

En 1963, cuando se supo que protones y neutrones (los llamados nucleones) están formados por Quarks, se pensó que la fuerza fuerte actúa realmente entre los Quarks.

En la teoría cuántica de campos, a cada tipo de interacción le corresponde una familia de partículas portadoras de la interacción.Las partículas que transportan la fuerza fuerte nuclear que interactúa entre los quarks se denominan gluones.

La fuerza nuclear fuerte se deduce del requisito de que las ecuaciones que describen a los quarks deben ser las mismas, independientemente de cómo se elija la definición de  los colores de los quarks.

Resultado de imagen de La interacción fuerte

La interacción es fuerte. En realidad, la más fuerte de todas.

Lo dejaré aquí, en verdad, eso que el Modelo Estándar de la Física, es feo, complejo e incompleto y, aunque hasta el momento es una buena herramienta con la que trabajar, la verdad es que, se necesita un nuevo modelo más avanzado y que incluya la Gravedad.

Veremos que nos trae la nueva etapa del LHC.

emilio silvera

Hoy un sueño ¿Realidad mañana?

$
0
0

Llegará un día en el que, podremos entrar en un inmenso espacio, una enorme habitación, en la que, previa elección de la  programación adecuada, todo se transformará en un “mundo ficticio”, un holograma que, lo mismo podrá ser una playa luminosa con arena dorada por el Sol que, una Selva tropical o un desierto, dependiendo de los gustos del usuario.

Si repasamos la historia de la ciencia, seguramente encontraremos muchos motivos para el optimismo. Witten (el Físico de la Teoría M),  está convencido de que la ciencia será algún día capaz de sondear hasta las energías de Planck. Como ya he referido en otras ocasiones, él dijo:

“No siempre es tan fácil decir cuáles son las preguntas fáciles y cuáles las difíciles. En el siglo XIX, la pregunta de por qué el agua hierve a 100 grados era desesperadamente inaccesible. Si usted hubiera dicho a un físico del siglo XIX que hacia el siglo XX sería capaz de calcularlo, le habría parecido un cuento de hadas… La teoría cuántica de campos es tan difícil que nadie la creyó completamente durante 25 años.”

 

 

 

 

En su opinión, las buenas ideas siempre se verifican. Los ejemplos son innumerables: la gravedad de Newton, el campo eléctrico de Faraday y el electromagnetismo de Maxwell, la teoría de la relatividad de Einstein en sus dos versiones y su demostración del efecto fotoeléctrico, la teoría del electrón de Paul Dirac, el principio de incertidumbre de Heisenberg, la función de ondas de Schrödinger, y tantos otros. Algunos de los físicos teóricos más famosos, sin embargo, protestaban de tanto empeño en la experimentación. El astrónomo arthur Eddington se cuestionaba incluso si los científicos no estaban forzando las cosas cuando insistían en que todo debería ser verificado. ¡Cómo cambia todo con el Tiempo! Hasta la manera de pensar.

Sin embargo, muchos son los ejemplos de un ingenio superior que nos llevaron a desvelar secretos de la Naturaleza que estaban profundamente escondidos, y, el trabajo de Dirac en relación al electrón, es una buena muestra de ese ingenio humano que, de vez en cuando vemos florecer.

Ya que la ecuación de Dirac fue originalmente formulada para describir el electrón, las referencias se harán respecto a “electrones”, aunque actualmente la ecuación se aplica a otros tipos de partículas elementales de espín ½, como los quarks. Una ecuación modificada de Dirac puede emplearse para describir de forma aproximada los protones y los neutrones, formados ambos por partículas más pequeñas llamadas quarks (por este hecho, a protones y neutrones no se les da la consideración de partículas elementales).

La ecuación de Dirac presenta la siguiente forma:

Resultado de imagen de La ecuación de Dirac

Ésa es la ecuación de Dirac. Gracias a esto, se describe el fenómeno de entrelazamiento cuántico, que en la práctica dice que: ‘Si dos sistemas interactúan uno con el otro durante un cierto período de tiempo y luego se separan, lo podemos describir como dos sistemas separados, pero de alguna manera sutil están convertidos en un solo sistema. Uno de ellos sigue influyendo en el otro, a pesar de kilómetros de distancia o años luz’. Esto es el entrelazamiento cuántico o conexión cuántica. Dos partículas que, en algún momento estuvieron unidas, siguen estando de algún modo relacionadas. No importa la distancia entre ambas, aunque se hallen en extremos opuestos del universo. La conexión entre ellas es instantánea.

La llamada ecuación de Dirac es la versión relativista de la ecuación de ondas de la mecánica cuántica y fue formulada por Paul Dirac en 1928. Da una descripción de las partículas elementales de espín ½, como el electrón, y es completamente consistente con los principios de la mecánica cuántica y de la teoría de la relatividad especial. Además de dar cuenta del espín, la ecuación predice la existencia de antimateria.

El premio Nobel Paul dirac incluso llegó a decir de forma más categórica: “Es más importante tener belleza en las ecuaciones que tener experimentos que se ajusten a ellas“, o en palabras del físico John Ellis del CERN, “Como decía en una envoltura de caramelos que abrí hace algunos años, «Es sólo el optimista el que consigue algo en este mundo».

Yo, como todos ustedes, un hombre normal y corriente de la calle, escucho a unos y a otros, después pienso en lo que dicen y en los argumentos y motivaciones que les han llevado a sus respectivos convencimientos, y finalmente, también decido según mis propios criterios mi opinión, que no obligatoriamente coincidirá con alguna de esas opiniones, y que en algún caso, hasta me permito emitirla.

Resultado de imagen de La Teoría MResultado de imagen de La Teoría M

¿No es curioso que, cuando se formula la moderna Teoría M, surjan, como por encanto, las ecuaciones de Einstein de la Relatividad General? Nadie las llama y, sin embargo, allí aparecen para decirnos que, la Teoría de cuerdas es un buen camino a seguir, ya que, si en ella subyacen las ecuaciones de Einstein de la relatividad General… ¡No debe ser por casualidad!

Suponiendo que algún físico brillante nos resuelva la teoría de campos de cuerdas y derive las propiedades conocidas de nuestro universo, con un poco de suerte, podría ocurrir en este mismo siglo, lo que no estaría nada mal considerando las dificultades de la empresa. El problema fundamental es que estamos obligando a la teoría de supercuerdas a responder preguntas sobre energías cotidianas, cuando “ámbito natural” está en la energía de Planck. Esta fabulosa energía fue liberada sólo en el propio instante de la creación, lo que quiere decir que la teoría de supercuerdas es naturalmente una teoría de la creación.

Las primeras observaciones realizadas por Planck | ESA y Axel Mellinger.

    Las primeras observaciones realizadas por Planck | ESA y Axel Mellinger.

Fuimos capaces de predecir que el Big Bang produjo un “eco” cósmico reverberando en el universo y que podría ser mesurable por los instrumentos adecuados. De hecho, Arno Penzias y Robert Wilson de los Bell Telephone Laboratories ganaron el premio Nobel en 1.978 por detectar este eco del Big Bang, una radiación de microondas que impregna el universo conocido. El que el eco del Big Bang debería estar circulando por el universo miles de millones de años después del suceso fue predicho por primera vez por George Gamow y sus discípulos Ralpher y Robert Herman, pero nadie les tomó en serio. La propia idea de medir el eco de la creación parecía extravagante cuando la propusieron por primera vez poco después de la segunda guerra mundial. Su lógica, sin embargo, era aplastante.

La estufa básica es la resistencia por hilo enrollado Nicrom. Ésta se llega a poner al rojo vivo, por lo que emite también algo de calor por radiación.

Cualquier objeto, cuando se calienta, emite radiación de forma gradual. Ésta es la razón de que el hierro se ponga al rojo vivo cuando se calienta en un horno, y cuanto más se calienta, mayor es la frecuencia de radiación que emite. Una fórmula matemática exacta, la ley de Stefan-Boltzmann, relaciona la frecuencia de la luz (o el color en este caso) con la temperatura. De hecho, así es como los científicos determinan la temperatura de la superficie de una estrella lejana; examinando su color. Esta radiación se denomina radiación de cuerpo negro.

Esta radiación, cómo no, ha sido aprovechada por los ejércitos, que mediante visores nocturnos pueden operar en la oscuridad. De noche, los objetos relativamente calientes, tales como soldados enemigos o los carros de combate, pueden estar ocultos en la oscuridad, pero continúan emitiendo radiación de cuerpo negro invisible en forma de radiación infrarroja, que puede ser captada por gafas especiales de infrarrojo. Ésta es también la razón de que nuestros automóviles cerrados se calientes en verano, ya que la luz del Sol atraviesa los cristales del coche y calienta el interior. A medida que se calienta, empieza a emitir radiación de cuerpo negro en forma de radiación infrarroja. Sin embargo, esta clase de radiación no atraviesa muy bien el vidrio, y por lo tanto queda atrapada en el interior del automóvil, incrementando espectacularmente la temperatura.

Análogamente, la radiación de cuerpo negro produce el efecto invernadero. Al igual que el vidrio, los altos niveles de dióxido de carbono en la atmósfera, causados por la combustión sin control de combustibles fósiles, pueden atrapar la radiación de cuerpo negro infrarroja en la Tierra, y de este modo calentar gradualmente el planeta.

Gamow razonó que el Big Bang era inicialmente muy caliente, y que por lo tanto sería un cuerpo negro ideal emisor de radiación. Aunque la tecnología de los años cuarenta era demasiado primitiva para captar esta débil señal de la creación, Gamow pudo calcular la temperatura de dicha radiación y predecir con fiabilidad que un día nuestros instrumentos serían lo suficientemente sensibles como para detectar esta radiación “fósil”.

Ya la lista de ingenios es larga. Todos quieren medir la radiación del fondo de microondas generadas por el Big Bang. Incluso hemos preparado telescopios especiales para que nos puedan captar las ondas gravitatorias surgidas en aquellos primeros momento de la inflación.

La lógica que había detrás de su razonamiento era la siguiente: alrededor de 300.000 años después del Big Bang, el universo se enfrió hasta el punto en el que los átomos pudieron empezar a componerse; los electrones pudieron empezar a rodear a los protones y neutrones formando átomos estables, que ya no serían destruidos por la intensa radiación que estaba impregnando todo el universo. Antes de este momento, el universo estaba tan caliente que los átomos eran inmediatamente descompuestos por esa radiación tan potente en el mismo acto de su formación. Esto significa que el universo era opaco, como una niebla espesa absorbente e impenetrable.

Pasados 300.000 años, la radiación no era tan potente; se había enfriado y por lo tanto la luz podía atravesar grades distancias sin ser dispersada. En otras palabras, el universo se hizo repentinamente negro y transparente.

Terminaré esta parte comentando que un auténtico cuerpo negro es un concepto imaginario; un pequeño agujero en la pared de un recinto a temperatura uniforme es la mejor aproximación que se puede tener de él en la práctica.

La radiación de cuerpo negro es la radiación electromagnética emitida por un cuerpo negro. Se extiende sobre todo el rango de longitudes de onda y la disminución de energías sobre este rango tiene una forma característica con un máximo en una cierta longitud de onda, desplazándose a longitudes de onda más cortas al aumentar las temperaturas*.

Hablar, sin más especificaciones, de radiación, es estar refiriéndonos a una energía que viaja en forma de ondas electromagnéticas o fotones por el universo. También nos podríamos estar refiriendo a un chorro de partículas, especialmente partículas alfa o beta de una fuente radiactiva o neutrones de un reactor nuclear.

La radiación actínida es la electromagnética que es capaz de iniciar una reacción química. El término es usado especialmente para la radiación ultravioleta y también para denotar radiación que podría afectar a las emulsiones fotográficas.

Monografias.com

La radiación gamma es un tipo de radiación electromagnética producida generalmente por elementos radioactivos o procesos subatómicos como la aniquilación de un par positrón-electrón. Este tipo de radiación de tal magnitud también es producida en fenómenos astrofísicos de gran violencia.

La radiación gamma

Debido a las altas energías que poseen, los rayos gamma constituyen un tipo de radiación ionizante capaz de penetrar en la materia más profundamente que la radiación alfa o beta. Dada su alta energía pueden causar grave daño al núcleo de las células, por lo que son usados para esterilizar equipos médicos y alimentos.

La Radiación expone un amplio abanico dependiendo de la fuente:  blanda, radiación cósmica, radiación de calor, radiación de fondo, de fondo de microondas, radiación dura, electromagnética, radiación gamma, infrarroja, ionizante, monocromática, policromática, de sincrotrón, ultravioleta, de la teoría cuántica, de radiactividad… y, como se puede ver, la radiación en sus diversas formas es un universo en sí misma.

Siempre me llamó la atención y se ganó mi admiración el físico alemán Max Planck (1.858 – 1.947), responsable entre otros muchos logros de la ley de radiación de Planck, que da la distribución de energía radiada por un cuerpo negro. Introdujo en física el concepto novedoso de que la energía es una cantidad que es radiada por un cuerpo en pequeños paquetes discretos, en vez de una emisión continua. Estos pequeños paquetes se conocieron como cuantos y la ley formulada es la base de la teoría cuántica.

Einstein se inspiró en este trabajo para a su vez presentar el suyo propio sobre el efecto fotoeléctrico, donde la energía máxima cinética del fotoelectrónEm, está dada por la ecuación que lleva su nombre: Em = hf – Φ.

Cada metal requiere, para que se produzca la extracción, una radiación con una frecuencia mínima (no). Cualquier otra radiación de menor frecuencia, no será capaz de arrancar electrones. Por debajo de la frecuencia mínima la intensidad de corriente -”i” (amperios)- será cero. No hay efecto fotoeléctrico.

Planck publicó en 1.900 un artículo sobre la radiación de cuerpo negro que sentó las bases para la teoría de la mecánica cuántica que más tarde desarrollaron otros, como el mismo Einstein, Heisenberg, Schrödinger, Dirac, Feymann, etc. Todos los físicos son conocedores de la enorme contribución que Max Planck hizo en física: la constante de Planck, radiación de Planck, longitud de Planck, unidades de Planck, etc. Es posible que sea el físico de la historia que más veces ha dado su nombre a conceptos de física. Pongamos un par te ejemplos de su ingenio:

Resultado de imagen de La constante de planck

1.      vale 10-35 metros. Esta escala de longitud (veinte órdenes de magnitud menor que el tamaño del protón, de 10-15 m) es a la que la descripción clásica de gravedad cesa de ser válida y debe ser tenida en cuenta la mecánica cuántica. En la fórmula que la describe, G es la constante gravitacional, ħ es la constante de Planck racionalizada y c en la velocidad de la luz.

2.      . Es la masa de una partícula cuya longitud de onda Compton es igual a la longitud de Planck. En la ecuación, ħ es la constante de Planck racionalizada, c es la velocidad de la luz y G es la constante gravitacional. Así, Se denomina masa de Planck a la cantidad de masa (21,7644 microgramos) que, incluida en una esfera cuyo radio fuera igual a la longitud de Planck,  generaría una densidad del orden de 1093 g/cm³. Según la física actual, esta habría sido la densidad del Universo cuando tenía unos {10}^{-44} segundos, el llamado Tiempo de Planck. Su ecuación, es decir la masa de Planc se denota:

M_p = \sqrt{\frac{\hbar c}{G}} = 2,18 \times 10^{-8}\, \mbox{kg}

El valor de la masa de Planck (M_p) se expresa por una fórmula que combina tres constantes fundamentales, la constante de Planck,  (h), la velocidad de la luz (c),  y la constante de gravitación universal (G). La masa de Planck es una estimación de la masa del agujero negro primordial menos masivo, y resulta de calcular el límite donde entran en conflicto la descripción clásica y la descripción cuántica de la gravedad.

Al entrar en algunos límites de la materia, nos encontramos con la espuma cuántica

“Aunque todas estas descripciones reflejan más una abundante imaginación que un hecho existencial apoyado teóricamente con alguna hipótesis que pueda ser comprobada en el laboratorio sobre hechos que están más allá de poder ser medidos jamás en algún laboratorio construído por humanos. La única forma de confrontar la factibilidad o la posibilidad del modelo de la espuma cuántica nos lleva necesariamente a confrontar la carencia de un modelo que logre unificar exitosamente al macrocosmos con el microcosmos, a la Relatividad General con la Mecánica Cuántica, la Gravedad Cuántica. Si la energía y la materia (o mejor dicho la masa-energía) están discretizadas, se supone que también deben de estarlo el espacio y el tiempo (o mejor dicho, el espacio-tiempo), y la “partícula fundamental” del espacio-tiempo debe de serlo el gravitón, aunque de momento todo esto son especulaciones que seguirán siéndolo mientras no tengamos a la mano algo que pueda confirmar la existencia de tan exótica partícula, quizá la más exótica de cuantas hayan sido concebidas por la imaginación del hombre.”

 

 

La descripción de una partícula elemental de esta masa, o partículas que interaccionan con energías por partículas equivalentes a ellas (a través de E = mc2), requiere de una teoría cuántica de la gravedad. Como la masa de Planck es del orden de 10-8 Kg (equivalente a una energía de 1019 GeV) y, por ejemplo, la masa del protón es del orden de 10-27 Kg y las mayores energías alcanzables en los aceleradores de partículas actuales son del orden de 103 GeV, los efectos de gravitación cuántica no aparecen en los laboratorios de física de partículas. Únicamente en un laboratorio aparecieron partículas que tenían energías del orden de la masa de Planck: en el universo primitivo, de acuerdo con la teoría del Big Bang, motivo éste por el que es necesaria una teoría cuántica de la gravedad para estudiar aquellas condiciones. Esta energía de la que estamos hablando, del orden de 1019 GeV (inalcanzable para nosotros), es la que necesitamos para verificar la teoría de supercuerdas.

Resultado de imagen de El núcleo del átomo

Uno de los mayores misterios que hemos podido comprender es la complejidad que está presente en el núcleo de los átomos, las cosas que allí pasan y los objetos que actúan dentro del núcleo… Son asombrosos!

Siempre, desde que puedo recordar, me llamó la atención los misterios y secretos encerrados en la naturaleza, y la innegable batalla mantenida a lo largo de la historia por los científicos para descubrirlos. Muchos han sido los velos que hemos podido descorrer para que, la luz cegadora del saber pudiera entrar en nuestras mentes para hacerlas comprender cómo actuaba la Naturaleza en ciertas ocasiones y el por qué de tales comportamientos, y, sin embargo, a pesar del largo camino recorrido, es mucho más el que nos queda por andar.

emilio silvera

¿Pueden llegarnos mensajes del futuro?

$
0
0

Resultado de imagen de Mensajes desde el futuro

Investigadores proponen una solución a algunos problemas de la Física Cuántica,  y se refieren a los viajes en el tiempo o la paradoja del abuelo.

Las curvas temporales abiertas podrían resolver muchos problemas de la Física

Las curvas temporales abiertas podrían resolver muchos problemas de la Física – NPJ QUANTUM INFORMATION

Un grupo internacional de investigadores, liderados por la Universidad de Singapur, acaba de demostrar que numerosos problemas de la Física Cuántica, hoy por hoy irresolubles, podrían solucionarse fácilmente con un ordenador cuántico que viajara a través de “curvas temporales abiertas”. El trabajo, que ha levantado gran expectación en la comunidad científica, se publica en la revista Nature Quantum Information.

Resultado de imagen de Ordenador cuántico

IBM prepara el primer ordenador cuántico. La máquina podría resolver problemas que las computadoras actuales ni se pueden plantear. Cuando esté completada su configuración podrá dar millones de respuestas a un problema planteado en fracciones de segundo.

Hace ya una década que el físico Dave Bacon, que en la actualidad trabaja para Google, demostró que la mejor forma de resolver rápidamente todo un grupo de problemas de la Física (llamados NP-completo) y que traían de cabeza a los matemáticos, era utilizando un ordenador cuántico que se desplazara a través del tiempo. ¿La razón? El hipotético ordenador de Bacon podría moverse con libertad a través de una serie de “curvas cerradas de tiempo”, atajos en el tejido espaciotemporal que se curvan sobre sí mismos. La relatividad general en efecto, permite que dichos caminos puedan existir a través de las contorsiones en el espacio-tiempo que conocemos como agujeros de gusano.

Resultado de imagen de Caminos a través de agujeros de gusano

¿Pero para qué enviar un mensaje en el tiempo y bloquearlo después para que nadie pueda leer su contenido? Sencillamente porque el procedimiento podría ser la clave que se necesitaba para resolver problemas que, actualmente, no tienen solución alguna. Y es que incluso un mensaje “sin abrir” puede resultar tremendamente útil, especialmente si los científicos “entrelazan” el mensaje con algún otro sistema antes de enviarlo.

Resultado de imagen de Resultado de imagen de el entrelazamiento cuántico

                              Confirman el entrelazamiento cuántico gracias a la luz de una estrella

Imagen relacionada

Como se sabe, el entrelazamiento cuántico es un efecto extraño que es posible solo en el mundo de la Física subatómica, y consiste en una suerte de “comunicación instantánea” entre partículas que, como si fueran hermanos gemelos diminutos, “saben” al instante lo que le ha sucedido a las demás partículas entrelazadas y reaccionan al instante, sin importar la distancia que las separe. Y lo que proponen los investigadores es precisamente eso, crear un entrelazamiento entre el mensaje enviado a través del tiempo y el sistema del laboratorio. Una correlación que podría alimentar y potenciar la computación cuántica.

Resultado de imagen de Curvas temporales cerradas

Sin embargo, las curvas temporales cerradas conllevan no pocos problemas. En general, los físicos creen que, aunque son teóricamente posibles, algo debe de estar evitando que ese tipo de desplazamientos temporales se produzcan en la Naturaleza. De otra forma, argumentan, podrían darse todo tipo de paradojas, entre ellas la clásica de que alguien podría viajar al pasado y matar a su abuelo, impidiendo así su propia existencia.

Y no solo es la familia la que estaría amenazada por unos viajes así. En efecto, romper el flujo temporal, dejando a un lado el principio de causalidad (un acontecimiento causa otro, que causa otro, y otro…) también puede tener consecuencias para la propia Física cuántica. A lo largo de las dos décadas pasadas los investigadores han mostrado hasta la saciedad que los principios mismos sobre los que se basa la Física Cuántica se quiebran en pedazos ante la presencia de curvas temporales cerradas. Por ejemplo, se puede quebrar el principio de incertidumbre, que establece la imposibilidad de conocer al mismo tiempo determinados pares de magnitudes físicas de una partícula (como la velocidad y el momento). O incluso dejar a un lado el Teorema de no Clonación, que dice que los estados cuánticos no se pueden copiar y que constituye uno de los pilares más sólidos de la Mecánica Cuántica.

Evitar las paradojas

 Resultado de imagen de Las paradojas de los viajes en el Tiempo

         De Historias referidas a Viajes en el Tiempo hemos podido ver muchas en películas fantásticas

Sin embargo, el nuevo trabajo muestra que un ordenador cuántico sería capaz de resolver problemas hasta ahora irresolubles si en vez de por curvas cerradas, se desplazara a través de “curvas temporales abiertas”, que no crean los problemas de causalidad anteriormente descritos. Esto se debe a que dichas curvas no permiten la interacción directa con cualquier cosa en el propio pasado del objeto: las partículas viajeras del tiempo (o, para ser más exactos, los datos que contienen) nunca interaccionarían con sí mismas.

En la Teoría de la Relatividad se admite un espacio tetradimensional, con tres coordenadas espaciales y una temporal. Como no es posible representar en nuestra realidad semejante espacio de cuatro dimensiones, realizaremos una  aproximación representando por un plano el espacio tridimensional, más una coordenada temporal. Las soluciones temporales abiertas para expresar la evolución de un punto sería una gráfica del tipo:

Para Mila Gu, de la Universidad de Singapur y director de la investigación, de esta forma “evitamos las paradojas clásicas, como la de los abuelos, aunque seguimos consiguiendo todos esos resultados extraños”.

“Cada vez que presentamos la idea -afirma por su parte Jayne Thompson, coautor de la investigación- todo el mundo dice que no hay forma de que esto pueda tener un efecto”. Pero sí que la hay. Las partículas enviadas de esta forma a través de un bucle temporal pueden, de hecho, ganar un enorme poder de “super computación”, incluso si jamás interactúan con nada del pasado. “La razón se debe a que algunos datos se almacenan en las correlaciones de entrelazado: y esto es precisamente lo que estamos aprovechando”, asegura Thompson.

Sin embargo, no todos los físicos piensan que estas líneas de tiempo abiertas tengan más posibilidades de manifestarse en el Universo físico que las líneas cerradas. Y pueden que tengan razón. Uno de los principales argumentos en contra de la existencia de curvas temporales cerradas es que nadie, que sepamos, nos ha visitado nunca desde el futuro. Un argumento que, por lo menos, no es válido con las curvas temporales abiertas, ya que en ellas cualquier mensaje procedente del futuro resultaría bloqueado.

emilio silvera

¡La Física Cuántica! Una maravilla

$
0
0

¡La Física! Esa maravilla que está presente en todo lo que podemos ver y en aquello donde la vista no llega. La infinitud de las partículas elementales que forman todo cuanto existe en la Naturaleza, no siempre se dejan ver ni hacen posible que podamos observar las maravillas que pueden llevar a cabo,

Las sustancias formadas por una sola clase de átomos se llaman elementos químicos, y, si está conformada por distintos átomos, son compuestos. La palabra “átomo” procede del griego ατομος, que significa “indivisible” y el uso de la palabra “elemento” sugiere que se ha llegado a los ladrillos básicos con los que está formada la materia. De hecho, esta es la imagen que se tenía a mediados del siglo XIX cuando se acuñaron estos términos. Sin embargo, hoy sabemos que todo esto es falso, que los átomos se pueden dividir y que, de esta manera, los elementos han dejado de ser verdaderamente elementales. Los físicos continúan con esta nomenclatura aunque sea formalmente incorrecta, ya que, la costumbre, como dicen los juristas, no pocas veces rigen la jerga de las leyes.

A todo esto y hablando de los átomos, por fuerza, nos tenemos que acordar del electrón que da al átomo su forma esférica. Son partículas cargadas eléctricamente que se mueven alegremente alrededor del núcleo. El electrón es muy ligero: su masa es solamente 1/1.8836 de la del núcleo más ligero (el hidrógeno). La carga eléctrica del electrón es de signo opuesto a la del núcleo, de manera que los electrones están fuertemente atraídos hacia el núcleo y se repelen mutuamente. Si la carga eléctrica total de los electrones en un átomo iguala a la del núcleo, para lo que generalmente se necesitan varios electrones, se dice que el átomo está en equilibrio o que es eléctricamente neutro.

Claro que, no debemos olvidarnos de que… ¡Todo lo grande está hecho de cosas pequeñas! Una inmensa galaxia se conforma de un conjunto inmenso de átomos inifinitesimales que juntos, hacen ese gran todo.

http://webdelprofesor.ula.ve/ciencias/labdemfi/electrostatica/fotos/carga_globo_g.gif

La fuerza a la que obedecen los electrones, la denominada fuerza electrostática o de Coulomb, es matemáticamente bastante sencilla y, sin embargo, los electrones son los responsables de las importantes propiedades de los “enlaces químicos”. Esto se debe a que las leyes de movimiento de los electrones están regidas completamente por la “mecánica cuántica”, teoría que se completó a principios del siglo XX. Es una teoría paradójica y difícil de entender y explicar, pero al mismo tiempo es muy interesante, fantástica y revolucionaria. Cuando uno se introduce en las maravillas de la mecánica cuántica es como si hiciera un viaje a un universo que está situado fuera de este mundo nuestro, ya que, las cosas que allí se ven, desdicen todo lo que dicta nuestro sentido común de cómo tiene que ser el mundo que nos rodea.

http://www.mpe.mpg.de/410729/orbits3d_small_gif.gif

La perfecta sincronía Está en la Naturaleza

No solamente los electrones, sino también los núcleos atómicos y los átomos en su conjunto obedecen y se rigen por la mecánica cuántica. La Física del siglo XX empezó exactamente en el año 1900, cuando el físico alemán Max Planck, escribió un artículo de ocho páginas y allí propuso una posible solución a un problema que había estado intrigando a los físicos durante años. Es el problema de la luz que emiten los cuerpos calentados a una cierta temperatura, y también la radiación infrarroja emitida, con menos intensidad, por los objetos más fríos.

Estaban bien aceptados entonces que esta radiación tenía un origen electromagnético y que se conocían las leyes de la naturaleza que regían estas ondas electromagnéticas. También se conocían las leyes para el frío y el calor, la así llamada “termodinámica”, o al menos eso parecía. Pero si usamos las leyes de la termodinámica para calcular la intensidad de la radiación, el resultado no tiene ningún sentido. Los cálculos nos dicen que se emitiría una cantidad infinita de radiación en el ultravioleta más lejano, y, desde luego, esto no es lo que sucede. Lo que se observa es que la intensidad de la radiación muestra un pico a una cierta longitud de onda característica, y que la intensidad disminuye tanto para las longitudes mayores como para las longitudes menores. Esta longitud característica es inversamente proporcional a la temperatura absoluta del objeto radiante (la temperatura absoluta se define por una escala de temperatura que empieza a 273 ºC bajo cero). Cuando a 1.000 ºC un objeto se pone al “rojo vivo”, el objeto está radiando en la zona de luz visible.

Lo que Planck propuso fue simplemente que la radiación sólo podía ser emitida en paquetes de un tamaño dado. La cantidad de energía de uno de esos paquetes, o cuantos, es inversamente proporcional a la longitud de la onda y, por lo tanto, proporcional a la frecuencia de la radiación emitida. La sencilla fórmula es:

E = h x v

Donde E es la energía del paquete, v la frecuencia y h es una nueva constante fundamental de la naturaleza, la constante de Planck. Cuando Planck calculó la intensidad de la radiación térmica imponiendo esta nueva condición, el resultado coincidió perfectamente con las observaciones.

Resultado de imagen de Los cuantos de energía están presentes por todas partes y en todos los objetos

Poco tiempo después, en 1905, Einstein formuló esta teoría de una forma mucho más tajante: el sugirió que los objetos calientes no son los únicos que emiten radiación en paquetes de energía, sino que toda la radiación consiste en múltiplos de los paquetes de energía de Planck. El príncipe francés Louis-Victor de Broglie, dándole otra vuelta a la teoría, propuso que no sólo cualquier cosa que oscila tiene una energía, sino que cualquier cosa con energía se debe comportar como una “onda” que se extiende en una cierta región del espacio, y que la frecuencia, v, de la oscilación verifica la ecuación de Planck. Por lo tanto, los cuantos asociados con los rayos de luz deberían verse como una clase de partículas elementales: el fotón. Todas las demás clases de partículas llevan asociadas diferentes ondas oscilatorias de campos de fuerza.

El curioso comportamiento de los electrones en el interior del átomo, descubierto y explicado por el famoso físico danés Niels Bohr, se pudo atribuir a las ondas de De Broglie. Poco después, en 1926, Erwin Schrödinger descubrió como escribir la teoría ondulatoria de Debroglie con ecuaciones matemáticas exactas. La precisión con la cual se podían realizar cálculos era asombrosa, y pronto quedó claro que el comportamiento de todos los objetos pequeños estaban exactamente determinados por la recién descubiertas “ecuaciones de onda cuánticas”.

Pocas dudas nos pueden caber a estas alturas de que la mecánica cuántica (de Planck) y, la Relatividad –tanto especial como general- (de Einstein), además de ser las dos teorías más importantes de la Física de nuestro tiempo, funcionan de tal forma que uno, cuando profundiza en sus predicciones y las compara con lo que ocurre en el Universo, no puede por menos que, asombrarse, al comprobar como unas mentes humanas han sido capaces de llegar a estos profundos pensamientos que nos acerca a la realidad de la Naturaleza.

emilio silvera

Todo tiene un límite. Las “Teorías” también

$
0
0

Poco a poco vamos pudiendo explicar las cosas que hoy no sabemos y, los adelantos continuados, en todas las disciplinas, del saber humano, hace posible que las teorías de hoy, no sean las del mañana, toda vez que, cuando se descubren nuevos datos y nuevos sucesos, nos hacen tomar también, caminos nuevos que nos llevan a la búsqueda de nuevas teorías. Lo cierto es que siempre andamos a vueltas con las teorías, y, tenemos que ser conscientes que las teorías tienen unos límites que están bien determinados.

Veamos:

Unas nos hablan del “universo” de lo muy pequeño y otras, del “universo” de lo muy grande, pero… ¿Cuáles son los límites de la teoría cuántica y de la teoría de la relatividad general de Einstein? Afortunadamente, hay una respuesta simple y las unidades de Planck nos dicen cuales son.

Resultado de imagen de La onda cuántica de toda la masa del Universo

Supongamos que tomamos toda la masa del universo visible y determinamos su longitud de onda cuántica. Podemos preguntarnos en qué momento esta longitud de onda cuántica del universo visible superará su tamaño.  La respuesta es: cuando el universo sea más pequeño en tamaño que la longitud de Planck, es decir, 10-33 centímetros, más joven que el tiempo de Planck 10ˉ⁴³ segundos y supere la temperatura de Planck de 1032 grados.  Las unidades de Planck marcan la frontera de aplicación de nuestras teorías actuales. Para comprender en que se parece el mundo a una escala menor que la longitud de Planck tenemos que comprender plenamente cómo se entrelaza la incertidumbre cuántica con la gravedad. Para entender lo que podría haber sucedido cerca del suceso que estamos tentados a llamar el principio del universo, o el comienzo del tiempo, tenemos que penetrar la barrera de Planck. Las constantes de la naturaleza marcan las fronteras de nuestro conocimiento existente y nos dejan al descubierto los límites de nuestras teorías.

En los intentos más recientes de crear una teoría nueva para describir la naturaleza cuántica de la gravedad ha emergido un nuevo significado para las unidades naturales de Planck. Parece que el concepto al que llamamos “información” tiene un profundo significado en el universo. Estamos habituados a vivir en lo que llamamos “la edad de la información”.  La información puede ser empaquetada en formas electrónicas, enviadas rápidamente y recibidas con más facilidad que nunca antes. Nuestra evolución en el proceso rápido y barato de la información se suele mostrar en una forma que nos permite comprobar la predicción de Gordon Moore, el fundador de Intel, llamada ley de Moore, en la que, en 1.965, advirtió que el área de un transistor se dividía por dos aproximadamente cada 12 meses. En 1975 revisó su tiempo de reducción a la mitad hasta situarlo en 24 meses. Esta es “la ley de Moore” cada 24 meses se obtiene una circuiteria de ordenador aproximadamente el doble, que corre a velocidad doble, por el mismo precio, ya que, el coste integrado del circuito viene a ser el mismo, constante.

Resultado de imagen de Los límites últimos que podemos esperar para el almacenamiento y los ritmos de procesamiento de la información están impuestos por las constantes de la naturaleza.

 Los procesamiento de información vienen impuestos por las constantes de la naturaleza. Día a día la computación cuántica se va acercando a la realidad.

Los límites últimos que podemos esperar para el almacenamiento y los ritmos de procesamiento de la información están impuestos por las constantes de la naturaleza. En 1981, el físico israelí, Jacob Bekenstein, hizo una predicción inusual que estaba inspirada en su estudio de los agujeros negros.  Calculó que hay una cantidad máxima de información que puede almacenarse dentro de cualquier volumen. Esto no debería sorprendernos. Lo que debería hacerlo es que el valor máximo está precisamente determinado por el área de la superficie que rodea al volumen, y no por el propio volumen. El  máximo de bits de información que puede almacenarse en un volumen viene dado precisamente por el cómputo de su área superficial en unidades de Planck. Supongamos que la región es esférica. Entonces su área superficial es precisamente proporcional al cuadrado de su radio, mientras que el área de Planck es proporcional a la longitud de Planck al cuadrado, 10-66 cm2.  Esto es muchísimo mayor que cualquier capacidad de almacenamiento de información producida hasta . Asimismo, hay un límite último sobre el ritmo de procesamiento de información que viene impuesto por las constantes de la naturaleza.

                                               Stoney                                                                        Planck

No debemos descartar la posibilidad de que seamos capaces de utilizar las unidades de Planck-Stoney para clasificar todo el abanico de estructuras que vemos en el universo,  el mundo de las partículas elementales hasta las más grandes estructuras astronómicas.  Este fenómeno se puede representar en un gráfico que recree la escala logarítmica de tamaño desde el átomo a las galaxias. Todas las estructuras del universo existen porque son el equilibrio de fuerzas dispares y competidoras que se detienen o compensan las unas a las otras; la atracción y la repulsión. Ese es el equilibrio de las estrellas donde la repulsión termonuclear tiende a expandirla y la atracción (contracción) de su propia masa tiende a comprimirla; así, el resultado es la estabilidad de la estrella. En el caso del planeta Tierra, hay un equilibrio entre la fuerza atractiva de la gravedad y la repulsión atómica que aparece cuando los átomos se comprimen demasiado juntos. Todos estos equilibrios pueden expresarse aproximadamente en términos de dos números puros creados a partir de las constantes e, h, c, G y mprotón.

Ilustración de la variación de la constante. UNSW.

“Tras medir alfa en unas 300 galaxias lejanas, vimos un patrón constante: este , que nos dice la fuerza del electromagnetismo, no es igual en otras partes que en la Tierra, y parecer variar de forma continua a lo largo de un eje”. Algunos se empeñan en variar la constante de estructura fina y, si eso llegara a producirse… las consecuencias serían funestas para nosotros. Otros estudios nos dicen que esa constante, no ha variado a lo largo de los miles de millones de años del Universo y, así debe ser, o, si varió, lo hizo en una escala ínfima.

α = 2πehc ≈ 1/137
αG = (Gmp2)/ hc ≈ 10-38

Si varían algunas de las dos en sólo una diezmillonésima, muchas de las cosas que conforman el Universo serían imposible y, la consecuencia sería, la ausencia de vida.  La identificación de constantes adimensionales de la naturaleza como a (alfa) y aG, junto con los números que desempeñan el mismo papel definitorio para las fuerzas débil y fuerte de la naturaleza, nos anima a pensar por un  en mundos diferentes del nuestro. Estos otros mundos pueden estar definidos por leyes de la naturaleza iguales a las que gobiernan el universo tal como lo conocemos, pero estarán caracterizados por diferentes valores de constantes adimensionales. Estos cambios numéricos alterarán toda la fábrica de los mundos imaginarios. Los átomos pueden tener propiedades diferentes. La gravedad puede tener un papel en el mundo a pequeña escala.  La naturaleza cuántica de la realidad puede intervenir en lugares insospechados.

La identificación de constantes adimensionales de la naturaleza como a (alfa) y aG, junto con los números que desempeñan el mismo papel definitorio para las fuerzas débil y fuerte de la naturaleza, nos anima a pensar por un momento en mundos diferentes del nuestro. Estos otros mundos pueden estar definidos por leyes de la naturaleza iguales a las que gobiernan el universo tal como lo conocemos, pero estarán caracterizados por diferentes valores de constantes adimensionales. Estos cambios numéricos alterarán toda la fábrica de los mundos imaginarios. Los átomos pueden tener propiedades diferentes. La gravedad puede tener un papel en el mundo a pequeña escala.  La naturaleza cuántica de la realidad puede intervenir en lugares insospechados.

Lo único que  en la definición del mundo son los valores de las constantes adimensionales de la naturaleza (así lo creían Einstein y Planck).  Si se duplica el valor de todas las masas no se puede llegar a saber, porque todos los números puros definidos por las razones de cualquier par de masas son invariables.

Cuando surgen comentarios de números puros y adimensionales, de manera automática aparece en mi mente el  137. Ese número encierra más de lo que estamos preparados para comprender; me hace pensar y mi imaginación se desboca en múltiples ideas y teorías. Einstein era un campeón en esta clase de ejercicios mentales que él llamaba “libre invención de la mente”. El gran físico creía que no podríamos llegar a las verdades de la naturaleza sólo por la observación y la experimentación. Necesitamos crear conceptos, teorías y postulados de nuestra propia imaginación que posteriormente deben ser explorados para averiguar si existe algo de verdad en ellos.

Para poner un ejemplo de nuestra ignorancia poco tendríamos que buscar, tenemos a mano miles de millones.

Resultado de imagen de El físico León Lederman

El gran Físico León Lederman nos decía:

“Todos los físicos del mundo, deberían tener un letrero en el lugar más visible de sus casas, para que al mirarlo, les recordara lo que no saben. En el cartel sólo pondría esto: 137. Ciento treinta y siete es el inverso de algo que lleva el  de constante de estructura fina”.

 

Este número guarda relación con la posibilidad de que un electrón emita un fotón o lo absorba. La constante de estructura fina responde también al nombre de “alfa” y sale de dividir el cuadrado de la carga del electrón, por el producto de la velocidad de la luz y la constante de Planck. Tanta palabrería y numerología no significan otra cosa sino que ese solo numero, 137, encierra los misterios del electromagnetismo (el electrón, e-), la relatividad (la velocidad de la luz, c), y la teoría cuántica (la constante de Planck, h).

Todo resulta estar supeditado a un equilibrio que viene dado por fuerzas contrapuestas y, no pocas veces, la masa y las dimensiones de los objetos tienen mucho que decir en las situaciones que se puedan crear y en los comportamientos de las pequeñas y grandes estructuras del Universo

Sus dimensiones y masa le permiten ¡lo imposible! para nosotros. La tensión superficial es una consecuencia de que todas las moléculas y los átomos se atraen unos a otros con una fuerza que nosotros llamamos fuerza de Van der Vaalls. esta fuerza tiene un alcance muy corto. para ser más precisos, diremos que la intensidad de esta fuerza a una distancia r es aproximadamente proporcional a 1/r7. Esto significa  que si se reduce la distancia entre dos átomos a la mitad, la fuerza de Van der Vaalls con la que se atraen uno a otro se hace 2 x 2 x 2 x 2 x 2 x 2 x 2 = 128 veces más intensa. Cuando los átomos y las moléculas se acercan mucho unos a otros quedan unidos muy fuertemente a través de esta fuerza.

Resultado de imagen de La mecánica cuántica

La mecánica cuántica domina en el micromundo de los átomos y de las partículas “elementales”. Nos enseña que en la naturaleza cualquier masa, por sólida o puntual que pueda parecer, tiene un aspecto ondulatorio. Esta onda no es como una onda de agua. Se parece más a una ola de histeria que se expande: es una onda de información. Nos indica la probabilidad de detectar una partícula. La longitud de onda de una partícula, la longitud cuántica, se hace menor cuanto mayor es la masa de esa partícula.

Resultado de imagen de Relatividad general

Por el contrario, la relatividad general era siempre necesaria cuando se trataba con situaciones donde algo viaja a la velocidad de la luz, o está muy cerca o donde la gravedad es muy intensa. Se utiliza describir la expansión del universo o el comportamiento en situaciones extremas, como la formación de agujeros negros.

Resultado de imagen de La mecánica cuántica

Sin embargo, la gravedad es muy débil comparada con las fuerzas que unen átomos y moléculas y demasiado débil para tener cualquier efecto sobre la estructura del átomo o de partículas subatómicas, se trata con masas tan insignificantes que la incidencia gravitatoria es despreciable. Todo lo contrario que ocurre en presencia de masas considerables como planetas, estrellas y galaxias, donde la presencia de la gravitación curva el espacio y distorsiona el tiempo.

Como resultado de estas propiedades antagónicas, la teoría cuántica y la teoría relativista gobiernan reinos diferentes, muy dispares, en el universo de lo muy pequeño o en el universo de lo muy grande. Nadie ha encontrado la manera de unir, sin fisuras, estas dos teorías en una sola y nueva de Gravedad-Cuántica.

Resultado de imagen de La velocidad de la luz en el vacío

La velocidad de la luz en el vacío es por definición una constante universal de valor 299.792.458 m/s(suele aproximarse a 3·108 m/s), o lo que es lo mismo 9,46·1015 m/año; la segunda cifra es la usada definir al intervalo llamado año luz. La información se transmitirá a esa velocidad como máximo, nuestro Universo, no permite mayor rapidéz, al menos, por los métodos convencionales. Lo cierto es que algún día nos daremos cuenta y descubriremos que la luz tiene más importancia de la que ahora le podemos dar, toda vez que no conocemos, la realidad de su naturaleza y todo lo que significa en nuestro Universo. Nosotros mismos, en última instancia… ¡Somos luz!

Resultado de imagen de Estamos hechos de átomos y de luz

De átomos que se juntan para formar moléculas y sustancias que tienen sus orgien en las estrellas, y, que por unas inexplicables transformaciones, ese conjunto evolucionada y puede llegar, a convertirse en pensamientos.

El año 2.015 fue el Año Internacional de la Luz, ese fenómeno natural del que tenemos muchos secretos que desvelar. Creo que, el día que sepamos, lo es realmente la luz,la inmensa ignorancia que llevamos acuesta, será más llevadera.

¡Sabemos aun tan poco!

emilio silvera

Estamos tratando de recrear la creación

$
0
0

 

Resultado de imagen de Recreando los primeros instantes del Universo

 

 

Me ha venido a la memoria una noticia que leí, no hace tanto tiempo, en un Boletin de la RSEF, se refería a nuevas y ambiciosas iniciativas en el campo de la Física para tratar de recrear los primeros instantes del Universo, y, sobre todo, de desvelar los secretos que esconde la materia que, según parece y a pesar de los muchos avances conseguidos… ¡Aún no conocemos!

Una noticia de hace cuatro años decía:,  decía:

“Europa construirá un acelerador tres veces mayor que el LHC.  Aunque el LHC seguirá funcionando por lo menos durante dos décadas más, Europa ya empieza a pensar en su sucesor: un enorme colisionador con una circunferencia de 100 km (frente a los 27 del LHC) y capaz de alcanzar una energía de 100 TeV, siete veces superior a los 14 TeV a los que puede llegar, como máximo, el LHC. Tras alcanzar el hito de detectar el bosón de Higgs, el LHC está apagado para llevar a cabo tareas de mantenimiento y no volverá a funcionar hasta 2015. El Modelo Estándar incluye a todos los componentes fundamentales de la materia ordinaria pero no dice nada de la materia oscura ni de la energía oscura. “Tenemos muchas esperanzas de que cuando el LHC funcione el año que viene a su máximo nivel de energía podamos tener un primer atisbo de lo que es la materia oscura. Y a partir de ahí determinar los objetivos del próximo gran colisionador”, dice Heuer, Director del CERN.”

 

Las obras sobre los detectores ATLAS y CMS permitirán construir nuevas estructuras subterráneas destinadas al LHC de alta luminosidad. / Julien Ordan/CERN</p>
<p>

Las obras sobre los detectores ATLAS y CMS permitirán construir nuevas estructuras subterráneas destinadas al LHC de alta luminosidad. / Julien Ordan/CERN

 

 

Ya estamos en 2.019, y el LHC ha comenzado sus preparativos a mayor energía para tratar de buscar esa dichosa “materia oscura” de la que todo el mundo habla y de la que nadie sabe decir, a ciencia cierta, de qué está hecha, cómo surgío, por qué no emite radiación y sí gravedad…

Está bien que no dejemos de avanzar y sigamos buscando aquello que desconocemos. La Naturaleza esconde muchos secretos que tratamos de desvelar  y, la hipotética “materia oscura” es uno de ellos. Hablamos y hablamos sobre algo que no sabemos si en realidad será. Tampoco sabemos de que pueda estar conformada, de dónde surgió y por qué, y,  si emite o genera fuerza gravitatoria por qué no emite radiación. En fin, un misterio que sería bueno resolver. Está claro que algo debe haber, una especie de sustancia cósmica que impregna todo el Espacio, es la única manera de explicarse como pudieron formarse las galaxias.

Resultado de imagen de El diámetro del LHC

¡100 TeV! ¡100 Km de diámetro!

Si cuando se acercaba la hora de puesta en marcha del LHC salieron múltiples organizaciones planteando protestas de todo tipo, incluso alguna se atrevió a decir que el Acelerador tenía tanta energía que crearía un agujero negro que se tragaría a la Tierra. ¿Qué dirán ahora del futuro Acelerador? Seguramente, habrá mucha más algarabía, protestas y un sin fin de manifestaciones de todo tipo. Sin embargo, el futuro… ¡Es imparable!

Imagen relacionada

Imagen relacionada
Imagen relacionada
Imagen relacionada
Imagen relacionada
Imagen relacionada
Imagen relacionada
Imagen relacionada

Tendrá muchas mejoras que elevarán el nivel de sus prestaciones

La idea principal detrás de esta mejora es incrementar el número de colisiones que se producen en los dos experimentos más grandes, ATLAS y CMS. El HL-LHC multiplicará por cinco el número de colisiones que se producen cada segundo en el actual LHC. De está manera, entre los años 2026 y 2036, se podrá acumular diez veces más información que toda la generada por el LHC durante 15 años. Con semejante cantidad de información deberíamos tener acceso a procesos muy raros que ocurren con una probabilidad muy baja y que pueden contener la respuesta a las grandes cuestiones de la física que todavía permanecen abiertas.

emilio silvera


Intrincada búsqueda: ¡La Gravedad cuántica!

$
0
0
Resultado de imagen de Gravedad cuánticaResultado de imagen de Gravedad cuántica
Todos sabemos de la resistencia que pone la Gravedad a integrarse en el Modelo Estándar de la física de partículas y de las interacciones fundamentales. Parece ser que, en la Teoría de cuerdas subyace la teoría de la Gravedad-Cuántica, allí conviven en armonía las dos teorías, la de Einstein y la de Planck.
Pero la cosa no se queda aquí, si no que la Teoría de Cuerdas es capaz de describir todas las interacciones contempladas en el modelo estándar, pues las vibraciones de las cuerdas son capaces de dar lugar a todos los bosones que propagan estas interacciones si las condiciones son idóneas.
Cuando hablamos de Gravedad cuántica, estamos tratando de abarcar mucho más, de lo que en realidad podemos. Esas sencillas palabras ¡Gravedad cuántica!, están apuntando hacia un horizonte hasta el momento presente inalcanzable y que, integra muchas ideas e intuiciones que los físicos teóricos han expuesto con generosidad.

 

Nunca han importado muchos los peligros que tengamos que correr para buscar las respuestas de lo profundamente escondido en la Naturaleza, ni tampoco ha importado hasta donde ha tenido que viajar la imaginación para configurar modelos y teorías que, más tarde, queremos verificar.

 

 

Resultado de imagen de La Gravedad cuántica

 

 

“La naturaleza de la conciencia humana”, que Penrose opina no es de naturaleza puramente algorítmica sino que incluiría elementos no computables. Penrose apunta que una teoría cuántica de la gravitación debería ser no lineal, y si bien podría ser realmente determinista sería claramente no computable lo que explicaría que los fenómenos cuánticos de medición nos parecieran impredecibles tal como realmente observamos.

También una teoría cuántica de la gravedad debería ampliar nuestro conocimiento de efectos cuánticos predichos por enfoques tentativos de otras teorías cuánticas, como la existencia de radiación de Hawking.”

¡Y mucho más sobre este mismo tema!

 

 

¿Qué es la teoría de cuerdas?

 

Entre los teóricos, el casamiento de la relatividad general y la teoría cuántica es el problema central de la física moderna. A los esfuerzos teóricos que se realizan con ese propósito se les llama “supergravedad”, “súpersimetría”, “supercuerdas” “teoría M” o, en último caso, “teoría de todo o gran teoría unificada”.

Resultado de imagen de Es gran teoría del todo en la Física

“El concepto de una “teoría del todo” está arraigado en el principio de causalidad y su descubrimiento es la empresa de acercarnos a ver a través de los ojos del demonio de Laplace.  Aunque dicha posibilidad puede considerarse como determinista, en una “simple fórmula” puede todavía sobrevivir la física fundamentalmente probabilista, como proponen algunas posturas actuales de la mecánica cuántica. Esto se debe a que aun si los mecanismos que gobiernan las partículas son intrínsecamente azarosos, podemos conocer las reglas que gobiernan dicho azar y calcular las probabilidades de ocurrencia para cada evento posible. Sin embargo, otras interpretaciones de la ecuación de Schrödinger conceden poca importancia al azar: este solo se tendría importancia dentro del átomo y se diluiría en el mundo macroscópico. Otras no obstante la niegan completamente y la consideran una interpretación equivocada de las leyes cuánticas. En consecuencia, la mayor dificultad de descubrir una teoría unificada ha sido armonizar correctamente leyes que gobiernan solo un reducido ámbito de la naturaleza y transformarlas en una única teoría que la explique en su totalidad, tanto en su mundo micro como macroscópico y explique la existencia de todas las interacciones fundamentales: las fuerzas gravitatoriaelectromagnéticanuclear fuerte y nuclear débil.”

Ahí tenemos unas matemáticas exóticas que ponen de punta hasta los pelos de las cejas de algunos de los mejores matemáticos del mundo (¿y Perelman? ¿Por qué nos se ha implicado?). Hablan de 10, 11 y 26 dimensiones, siempre, todas ellas espaciales menos una que es la temporal. Vivimos en cuatro: tres de espacio (este-oeste, norte-sur y arriba-abajo) y una temporal. No podemos, ni sabemos o no es posible instruir, en nuestro cerebro (también tridimensional), ver más dimensiones. Pero llegaron Kaluza y Klein y compactaron, en la longitud de Planck las dimensiones que no podíamos ver. ¡Problema solucionado!

¿Quién puede ir a la longitud de Planck para poder contemplar esas cuerdas vibrantes si es que están allí?

Ni vemos la longitud de Planck ni las dimensiones extra y, nos dicen que para poder profundizar hasta esa distancia, necesitamos disponer de la Energía de Planck, es decir 1019 GeV, una energía que ni en las próximas generaciones estará a nuestro alcance. Pero mientras tanto, hablamos de que, en 2.015, el LHC buscará las partículas de la “materia oscura”. ¡Qué gente!

La puerta de las dimensiones más altas quedó abierta y, a los teóricos, se les regaló una herramienta maravillosa. En el Hiperespacio, todo es posible. Hasta el matrimonio de la relatividad general y la mecánica cuántica, allí si es posible encontrar esa soñada teoría de la Gravedad cuántica.

Así que, los teóricos, se han embarcado a la búsqueda de un objetivo audaz: buscan una teoría que describa la simplicidad primigenia que reinaba en el intenso calor del universo en sus primeros tiempos, una teoría carente de parámetros, donde estén presentes todas las respuestas. Todo debe ser contestado a partir de una ecuación básica.

¿Dónde radica el problema?

Nuestro universo ¿es tridimensional y no podemos esas dimensiones extra de las que tanto hablan en las teorías más avanzadas pero, no verificadas?

El problema está en que la única teoría candidata no tiene conexión directa con el mundo de la observación, o no lo tiene todavía si queremos expresarnos con propiedad. La energía necesaria para ello, no la tiene ni el nuevo acelerador de partículas LHC que con sus 14 TeV no llegaría ni siquiera a vislumbrar esas cuerdas vibrantes de las que antes os hablaba.

La verdad es que, la teoría que ahora tenemos, el Modelo Estándar, concuerda de manera exacta con todos los datos a bajas energías y contesta cosas sin sentido a altas energías. Ya sabéis lo que pasa cuando queremos juntar la relatividad con la cuántica: ¡Aparecen los infinitos que no son renormalizables!

Con sus 20 parámetros aleatorios (parece que uno de ellos ha sido hallado -el bosón de Higgs-), el Modelo estándar de la física de partículas que incluye sólo tres de las interacicones fundamentales -las fuerzas nucleares débil y fuerte y el electromagnetismo-, ha dado un buen resultado y a permitido a los físicos trabajar ampliamente en el conocimiento del mundo, de la Naturaleza, del Universo. Sin embargo, deja muchas preguntas sin contestar y, lo cierto es que, se necesitan nuevas maneras, nuevas formas, nuevas teorías que nos lleven más allá.

¡Necesitamos algo más avanzado!

Se ha dicho que la función de la partícula de Higgs  es la de dar masa a las partículas que conocemos y están incluidas en el Modelo estándar, se nos ha dicho que ha sido encontrada y el hallazgo ha merecido el Nobel de Física. Sin embargo… nada se ha dicho de cómo ésta partícula transmite la masa a las demás. Faltan algunas explicaciones.

El secreto de todo radica en conseguir la simplicidad: el átomo resulto ser complejo lleno de esas infinitesimales partículas electromagnéticas que bautizamos con el nombre de electrones, resultó que tenía un núcleo que contenía, a pesar de ser tan pequeño, casi toda la masa del átomo. El núcleo, tan pequeño, estaba compuesto de otros objetos más pequeños aún, los quarks que estaban instalados en nubes de otras partículas llamadas gluones y, ahora, queremos continuar profundizando, sospechamos, que después de los quarks puede haber algo más.

¿Es el efecto frenado que sufren las partículas que corren por el océano de Higgs, el que les da la masa?

Bueno, la idea nueva que surgió es que el espacio entero contiene un campo, el campo de Higgs, que impregna el vacío y es el mismo en todas partes. Es decir, que si miramos a las estrellas en una noche clara estamos mirando el campo de Higgs. Las partículas influidas por este campo, toman masa. Esto no es por sí mismo destacable, pues las partículas pueden tomar energía de los campos (gauge) de los que hemos comentado, del campo gravitatorio o del electromagnético. Si llevamos un bloque de plomo a lo alto de la Torre Eiffel, el bloque adquiriría energía potencial a causa de la alteración de su posición en el campo gravitatorio de la Tierra.

Como E=mc2, ese aumento de la energía potencial equivale a un aumento de la masa, en este caso la masa del Sistema Tierra-bloque de plomo. Aquí hemos de añadirle amablemente un poco de complejidad a la venerable ecuación de Einstein. La masa, m, tiene en realidad dos partes. Una es la masa en reposo, m0, la que se mide en el laboratorio cuando la partícula está en reposo. La partícula adquiere la otra parte de la masa en virtud de su movimiento (como los protones en el acelerador de partículas, o los muones, que aumentan varias veces su masa cuando son lanzados a velocidades cercanas a c) o en virtud de su energía potencial de campo. Vemos una dinámica similar en los núcleos atómicos. Por ejemplo, si separamos el protón y el neutrón que componen un núcleo de deuterio, la suma de las masas aumenta.

Peor la energía potencial tomada del campo de Higgs difiere en varios aspectos de la acción de los campos familiares. La masa tomada de Higgs es en realidad masa en reposo. De hecho, en la que quizá sea la versión más

apasionante de la teoría del campo de Higgs, éste genera toda la masa en reposo. Otra diferencia es que la cantidad de masa que se traga del campo es distinta para las distintas partículas.

Los teóricos dicen que las masas de las partículas de nuestro modelo estándar miden con qué intensidad se acoplan éstas al campo de Higgs.

La influencia de Higgs en las masas de los quarks y de los leptones, nos recuerda el descubrimiento por Pieter Zeeman, en 1.896, de la división de los niveles de energía de un electrón cuando se aplica un campo magnético al átomo. El campo (que representa metafóricamente el papel de Higgs) rompe la simetría del espacio de la que el electrón disfrutaba.

Hasta ahora no tenemos ni idea de que reglas controlan los incrementos de masa generados por el Higgs(de ahí la expectación creada por el acelerador de partículas LHC). Pero el problema es irritante: ¿por qué sólo esas masas –Las masas de los W+, W-, y Zº, y el up, el down, el encanto, el extraño, el top y el bottom, así como los leptones – que no forman ningún patrón obvio?

No dejamos de experimentar para saber cómo es nuestro mundo, la Naturaleza, el Universo que nos acoge

Las masas van de la del electrón 0’0005 GeV, a la del top, que tiene que ser mayor que 91 GeV. Deberíamos recordar que esta extraña idea (el Higgs) se empleó con mucho éxito para formular la teoría electrodébil (Weinberg-Salam). Allí se propuso el campo de Higgs como una forma de ocultar la unidad de las fuerzas electromagnéticas y débiles. En la unidad hay cuatro partículas mensajeras sin masa –los W+, W-, Zº fotón que llevan la fuerza electrodébil. Además está el campo de Higgs, y, rápidamente, los W y Z chupan la esencia de Higgs y se hacen pesados; el fotón permanece intacto. La fuerza electrodébilse fragmenta en la débil (débil porque los mensajeros son muy gordos) y la electromagnética, cuyas propiedades determina el fotón, carente de masa. La simetría se rompe espontáneamente, dicen los teóricos. Hay otra descripción según la cual el Higgs oculta la simetría con su poder dador de masa.

Las masas de los W y el Z se predijeron con éxito a partir de los parámetros de la teoría electrodébil. Y las relajadas sonrisas de los físicos teóricos nos recuerdan que Gerard ^t Hooft y Veltman dejaron sentado que la teoría entera esta libre de infinitos.

Relatividad y Gravedad Cuántica. Universidad de Cambridge.
Relatividad y Gravedad Cuántica. Universidad de Cambridge.
Roger Penrose es uno de los nuevos humanistas del siglo que se ha interesado por los problemas de las matemáticas, de la física, de la biología, de la psicología y de la filosofía. Siguiendo el modelo de Popper de los tres mundos, ha trabajado sobre la flecha del mundo 1 de la física, al mundo 2 de la conciencia, y del mundo 3 de las matemáticas. Complejos mundos que finalmente están conectados por esos hilos invisibles que mantiene al universo unido en todas sus partes, ¡las que piensan también!

Resultado de imagen de supercuerdas

La teoría de supercuerdas tiene tantas sorpresas fantásticas que cualquiera que investigue en el tema reconoce que está llena de magia. Es algo que funciona con tanta belleza… Cuando cosas que no encajan juntas e incluso se repelen, si se acerca la una a la otra alguien es capaz de formular un camino mediante el cual, no sólo no se rechazan, sino que encajan a la perfección dentro de ese sistema, como ocurre ahora con la teoría M que acoge con naturalidad la teoría de la relatividad general y la teoría mecánico-cuántica; ahí, cuando eso se produce, está presente la belleza.

Resultado de imagen de Teoría de supercuerdas

Desde Kaluza-Klein, la primera teoría de más dimensiones, estamos tratando de buscar como representar un espacio con dimensiones extra, y, a pesar de los muchos intentos, lo cierto es que, nuestro mundo sólo tiene tres de espacio y una de tiempo… ¿Dónde estarán esas otras hasta llegar a 11?

Lo que hace que la teoría de supercuerdas sea tan interesante es que el marco estándar mediante el cual conocemos la mayor parte de la física es la teoría cuántica y resulta que ella hace imposible la gravedad. La relatividad general de Einstein, que es el modelo de la gravedad, no funciona con la teoría cuántica. Sin embargo, las supercuerdas modifican la teoría cuántica estándar de tal manera que la gravedad no sólo se convierte en posible, sino que forma parte natural del sistema; es inevitable para que éste sea completo.

¿Por qué es tan importante encajar la gravedad y la teoría cuántica? Porque no podemos admitir una teoría que explique las fuerzas de la naturaleza y deje fuera a una de esas fuerzas. Así ocurre con el Modelo Estándar que deja aparte y no incluye a la fuerza gravitatoria que está ahí, en la Naturaleza.

La teoría de supercuerdas se perfila como la teoría que tiene implicaciones si tratamos con las cosas muy pequeñas, en el microcosmos; toda la teoría de partículas elementales cambia con las supercuerdas que penetra mucho más; llega mucho más allá de lo que ahora es posible.

Resultado de imagen de Topolog´çia y supercuerdas

La topología es, el estudio de aquellas propiedades de los cuerpos geométricos que permanecen inalteradas por transformaciones continuas. La topología es probablemente la más joven de las ramas clásicas de las matemáticas. En contraste con el álgebra, la geometría y la teoría de los números, cuyas genealogías datan de tiempos antiguos, la topología aparece en el siglo diecisiete, con el nombre de analysis situs, ésto es, análisis de la posición.

De manera informal, la topología se ocupa de aquellas propiedades de las figuras que permanecen invariantes, cuando dichas figuras son plegadas, dilatadas, contraídas o deformadas, de modo que no aparezcan nuevos puntos, o se hagan coincidir puntos diferentes. La transformación permitida presupone, en otras palabras, que hay una correspondencia biunívoca entre los puntos de la figura original y los de la transformada, y que la deformación hace corresponder puntos próximos a puntos próximos. Esta última propiedad se llama continuidad, y lo que se requiere es que la transformación y su inversa sean ambas continuas: así, trabajarnos con homeomorfismos.

Resultado de imagen de Las galaxias el Big BangResultado de imagen de Las galaxias el Big BangResultado de imagen de Las galaxias el Big Bang

En cuanto a nuestra comprensión del universo a gran escala (galaxias, el Big Bang…), creo que afectará a nuestra idea presente, al esquema que hoy rige y, como la nueva teoría, el horizonte se ampliará enormemente; el cosmos se presentará ante nosotros como un todo, con un comienzo muy bien definido y un final muy bien determinado.

Para cuando eso llegue, sabremos lo que es, como se genera y dónde están situados los orígenes de esa “fuerza”, “materia”, o, “energía” que ahora no sabemos ver para explicar el anómalo movimiento de las galaxias o la expansión del espacio que corre sin freno hacia… ¿Otro universo que tira del nuestro, como ocurren con las galaxias que terminan por fusionarse?

emilio silvera

¡Fluctuaciones de vacío! ¿Que son?

$
0
0

 

Un fuerte campo gravitatorio puede inducir un efecto desbocado en las fluctuaciones cuánticas que se producen en el espacio, aparentemente vacío, …

En física cuántica, la fluctuación cuántica es un cambio temporal en la cantidad de energía en un punto en el espacio como resultado del Principio de Incertidumbre que imaginó Werner Heisenberg. De acuerdo a una formulación de este principio energía y tiempo se relacionan de la siguiente forma:

\Delta E\Delta t\approx {h \over 2\pi }

Esto significa que la conservación de la energía puede parecer violada, pero sólo por breves lapsos. Esto permite la creación de pares partícula-anti-partícula de partículas virtuales. El efecto de esas partículas es medible, por ejemplo, en la carga efectiva del electrón, diferente de su carga “desnuda”. En una formulación actual, la energía siempre se conserva, pero los estados propios del Hamiltoniano no son los mismos que los del operador del número de partículas, esto es, si está bien definida la energía del sistema no está bien definido el número de partículas del mismo, y viceversa, ya que estos dos operadores no conmutan.

Imagen que representa las fluctuaciones del vacío entre una esfera y una superficie plana.

                          Las fluctuaciones del vacío entre una esfera y una superficie plana

En un estudio realizado por un equipo de físicos con avanzados aparatos, han hallado un resultado del que nos dicen:

La materia se construye sobre fundamentos frágiles. Los físicos acaban de confirmar que la materia, aparentemente sustancial, es en realidad nada más que fluctuaciones en el vació cuántico. Los investigadores simularon la frenética actividad que sucede en el interios de los protones y neutrones, que como sabéis son las partículas que aportan casi la totalidad de la masa a la materia común.

Cada protón (o neutrón) se compone de tres quarks – véase ilustración – pero las masas individuales de estos quarks apenas comprenden el 1% del total de la masa del protón¿Entonces de dónde sale el resto? La teoría sostiene que esta masa es creada por la fuerza que mantiene pegados a los quarks, y que se conoce como fuerza nuclear fuerte.  En términos cuánticos, la fuerza fuerte es contenida por un campo de partículas virtuales llamadas gluones, las cuales irrumpen aleatoriamente en la existencia para desaparecer de nuevo. La energía de estas fluctuaciones del vacío debe sumarse a la masa total del neutróny del protón.

 

 

En nuestras mentes se acumulan signos y fórmulas que quieren ser los exponentes de la verdadera razón y origen de la materia pero… ¡Estaremos acertando!

Tiene y encierra tantos misterios la materia que estamos aún y años-luz de y conocer sobre su verdadera naturaleza. Es algo que vemos en sus distintas formas materiales que configuran y conforman todo lo material desde las partículas elementales hasta las montañas y los océanos. Unas veces está en estado “inerte” y otras, se eleva hasta la vida que incluso,  en ocasiones, alcanza la consciencia de SER. Sin embargo, no acabamos de dilucidar de dónde viene su verdadero origen, su esencia,  lo que era antes de “ser” materia. ¿Existe acaso una especie de sustancia cósmica anterior a la materia? Y, si realmente existe esa sustancia… ¿Dónde está?

Resultado de imagen de Fluctuaciones de vacíoResultado de imagen de Fluctuaciones de vacío

                                         No será fácil llegar a controlar el vacío cuántico y tratamos de medirlo

Claro que hemos llegado a saber que las llamadas fluctuaciones del vacío son oscilaciones aleatorias, impredecibles e ineliminables de un campo de fuerza (electromagnético o gravitatorio) que son debidas a un “tira y afloja” en el que pequeñas regiones del espacio toman prestada, momentáneamente, energía de regiones adyacentes y luego las devuelven. Pero…

- ¿Qué regiones adyacentes?

Acaso universos paralelos, acaso deformaciones del espacio-tiempo a escalas microscópicas, micros agujeros negros que pasan a ser agujeros blancos salidos de estas regiones o campos de fuerza que no podemos ver pero sí sentir, y, en última instancia, ¿por qué se forman esas partículas virtuales que de inmediato se aniquilan y desaparecen antes de que puedan ser capturadas? ¿Qué sentido tiene todo eso?

Las consecuencias de la existencia del cuanto mínimo de acción fueron revolucionarios para la comprensión del vacío. Mientras la continuidad de la acción clásica suponía un vacío plano, estable y “realmente” vacío, la discontinuidad que supone el cuanto nos dibuja un vacío inestable, en continuo cambio y muy lejos de poder ser considerado plano en las distancias atómicas y menores. El vacío cuántico es de todo menos vacío, en él la energía nunca puede quedar estabilizada en valor cero, está fluctuando sobre ese valor, continuamente se están creando y aniquilando todo tipo de partículas, llamadas por eso virtuales, en las que el producto de su energía por el tiempo de su existencia efímera es menor que el cuanto de acción. Se llaman fluctuaciones cuánticas del vacío y son las responsables de que exista un que lo inunda todo llamado campo de punto cero.

Pero volvamos de nuevo a las fluctuaciones de vacío, que al igual que las ondas “reales” de energía positiva, están sujetas a las leyes de la dualidad onda/partícula; es decir, tienen tanto aspectos de onda como aspectos de partícula.

Resultado de imagen de Ondas cuánticas

Las ondas fluctúan de forma aleatoria e impredecible, con energía positiva momentáneamente aquí, energía negativa momentáneamente allí, y energía cero en promedio. El aspecto de partícula está incorporado en el concepto de partículas virtuales, es decir, partículas que pueden nacer en pares (dos partículas a un tiempo), viviendo temporalmente de la energía fluctuacional tomada prestada de regiones “vecinas” del , y que luego se aniquilan y desaparecen, devolviendo la energía a esas regiones “vecinas”. Si hablamos de fluctuaciones electromagnéticas del vacío, las partículas virtuales son fotones virtuales; en el caso de fluctuaciones de la gravedad en el vacío, son gravitones virtuales.

De las llamadas fluctuaciones de vacío pueden surgir, partículas virtuales y quién sabe que cosas más… Hasta un nuevo Universo.

                       Son muchas  las preguntas que no tienen respuestas

Parece que las fluctiuaciones ocurren en cualquier lugar, pero que, son tan minúsculas que ningún observador o experimentador las ha detectado de una manera franca hasta la fecha y, se sabe que están ahí por experimentos que lo han confirmado. Estas fluctuaciones son más poderosas cuanto menos escala se considera en el espacio y, por debajo de la longitud de Planck-Wheeler las fluctuaciones de vacío son tan enormes que el espacio tal como lo conocemos “pareciera estar hirviendo” para convertirse en una especie de espuma cuántica que parece que en realidad, cubre todo el espacio “vacío cuántico” que sabemos que está ahí y es el campo del que surgen esas partículas virtuales que antes mencionaba.

     ¿Espuma cuántica? Si profundizamos mucho en la materia… Podríamos ver otro universo distinto al nuestro. Las cosas miles de millones de veces más pequeñas que en nuestro mundo cotidiano, no parecen las mismas cosas.

Hay magnitudes asociadas con las leyes de la gravedad cuántica. La longitud de Planck-Wheeler, limite_planck es la escala de longitud por debajo de la cual el tal como lo conocemos deja de existir y se convierte en espuma cuántica.  El tiempo de Planck-Wheeler (1/c veces la longitud de Planck-Wheeler o aproximadamente 10-43 segundos), es el intervalo de tiempo más corto que puede existir; si dos sucesos están separados por menos que esto, no se puede decir cuál sucede antes y cuál después. El área de Planck-Wheeler (el cuadrado de la longitud de Planck-Wheeler, es decir, 2,61×10-66cm2) juega un papel clave en la entropía de un agujero negro. ¡Qué locura!

En el complejo general, por ahí, en alguna parte, permanece oculta esa teoría cuántica de la gravedad que incansables (pero sin ningún éxito hasta el momento) buscamos. Cuando sepamos unir las dos teorías de lo pequeño y lo grande, lo tendremos todo.

Como tantas veces hemos comentado, los trabajos que se han realizado sobre poder construir una teoría cuántica de la gravedad nos llevan a un sorprendente de implicaciones. Por un lado, sólo se ha podido conceptuar a la gravedad cuántica, siempre y cuando, el universo tenga más de cuatro dimensiones. Además, se llega a considerar que en la era de Planck, tanto el universo como la gravedad pudieron ser una sola cosa compacta estructurada por objetos cuánticos infinitamente diminutos, como los que suponemos que conforman las supercuerdas. A esta escala, el mismísimo espaciotiempo estaría sometido a imprescindibles fluctuaciones muy semejantes a las que causan las partículas al nacer y desaparecer de la existencia en el espaciotiempo ordinario. Esta noción ha conducido a los teóricos a describir el universo de la era cuántica como una especie de extremadamente densa y agitada espuma que pudo haber contenido las vibrantes cuerdecillas que propugnan los cosmólogos cuerdistas.

Los físicos especulan que el cosmos ha crecido a desde una «nada» primigenia que al nacer comenzó el principio del tiempo y que, en ese parto, contenía toda la materia y toda la energía.

En física como en todas las demás disciplinas científicas, los conocimientos avanzan y las teorías que sostuvieron los cimientos de nuestros conocimientos se van haciendo viejas y van teniendo que ser reforzadas con las nuevas y más poderosas “vigas” de las nuevas ideas y los nuevos hallazgos científicos que hacen posible ir perfeccionando lo que ya teníamos.

Recientemente se han alzado algunas voces contra el Principio de Incertidumbre de Heisenberg. He podido leer en un artíoculo de la prestigiosa Revista Nature, un artículo del premio Nobel de Física Gerald ´t Hoofft, en el que propone que la naturaleza probabilistica de la mecánica cuántica, desaparecería a la escala de Planck, en la que el comportamiento de la materia sería determinista; a longitudes mayores, energías más pequeñas.

El mundo de lo muy pequeño (el micro espacio), a nivel atómico y subatómico, es el dominio de la física cuántica, así nunca podríamos saber, de acuerdo m con el principio de incertidumbre, y, en un momento determinado, la posición y el estado de una partícula. Este estado podría ser una función de la escala espacio-temporal. A esta escala tamaños todo sucede demasiado deprisa para nosotros.

cuerdascuantica.jpg

El “universo cuántico” nada es lo que parece a primera vista, allí entramos en otro mundo que en nada, se parece al nuestro

 Cuando hablamos de la mecánica cuántica, tenemos mirar un poco hacia atrás en el tiempo y podremos darnos del gran impacto que tuvo en el devenir del mundo desde que, en nuestras vidas, apareció el átomo y, más tarde, sus contenidos. Los nombres de Planck, Einstein, Bohr, Heisenberg, Schrödinger, Pauli, Bardeen, Roentgen, Dirac y muchos otros, se pudieron a la cabeza de la lista de las personas más famosas. Aquel primer premio Nobel de Física otorgado en 1900 a Roentgen por descubrir los rayos X, en el mismo año llegaría el ¡cuanto! De Planck que inspiró a Einstein para su trabajo sobre el Efecto fotoeléctrico que también, le valdría el Nobel, y, a partir de ese momento, se desencadenó una especie de alucinante por saber sobre el átomo, sus contenidos, y, de qué estaba hecha la materia.

Resultado de imagen de La conocida como Paradoja EPR y los conceptos de Tiempo y , presente, pasado y futuro.

               La conocida como Paradoja EPR y los conceptos de Tiempo y, presente, pasado y futuro. La paradoja de Einstein-Podolsky-Rosen, denominada “Paradoja EPR”, trata de un experimento mental propuesto por Albert Einstein, Boris Podolsky y Nathan Rosen en 1935. Es relevante, pues pone de manifiesto un problema aparente de la mecánica cuántica, y en las décadas siguientes se dedicaron múltiples esfuerzos a desarrollarla y resolverla.

La Mecánica Cuántica es incompleta (conclusión EPR).  Dos posibles conclusiones enfrentadas:
La Mecánica Cuántica es completa, pero el realismo local no se cumple. Entonces… ¿Cómo se comporta la Naturaleza en realidad? Bueno, no siempre lo sabemos y, no hace mucho me encontré con el comentario de un científico que decía:
Resultado de imagen de El gato de Schrödinger
“Nadie ha resuelto la paradoja del gato de Schröedinger, ni la paradoja de Einstein-Podolsky-Rosen. El principio de incertidumbre no se ha explicado y se asume como un dogma, lo mismo pasa con el spin. El spin no es un giro pero es un giro.  Aquí hay un desafío al pensamiento humano. ¡Aquí hay una aventura del pensamiento!”

Fueron muchas las polémicas desatadas a cuenta de las aparentes incongruencias de la moderna Mecánica Cuántica. La paradoja de Einstein-Podolsky-Rosen, denominada “Paradoja EPR”, trata de un experimento mental propuesto por Albert Einstein, Boris Podolsky y Nathan Rosen en 1935. Es relevante, pues pone de manifiesto un problema aparente de la mecánica cuántica, y en las décadas siguientes se dedicaron múltiples esfuerzos a desarrollarla y resolverla.

Einstein (y a muchos otros científicos), la idea del entrelazamiento cuántico le resultaba extremadamente perturbadora. Esta particular característica de la mecánica cuántica permite preparar estados de dos o más partículas en los cuales es imposible obtener útil sobre el estado total del sistema haciendo sólo mediciones sobre una de las partículas.

Por otro lado, en un entrelazado, manipulando una de las partículas, se puede modificar el estado total. Es decir, operando sobre una de las partículas se puede modificar el estado de la otra a distancia de manera instantánea. Esto habla de una correlación entre las dos partículas que no tiene paralaje en el mundo de nuestras experiencias cotidianas. Cabe enfatizar pues que cuando se mide el estado de una partícula, enseguida sabemos el estado de la otra, lo cual aparentemente es instantáneo, es decir, sin importar las distancias a las que se encuentren las partículas, una de la otra, ambas saben instantáneamente el estado de la otra.

El experimento planteado por EPR consiste en dos partículas que interactuaron en el pasado y que quedan en un estado entrelazado. Dos observadores reciben cada una de las partículas. Si un observador mide el momento de una de ellas, sabe cuál es el momento de la otra. Si mide la posición, gracias al entrelazamiento cuántico y al principio de incertidumbre, puede la posición de la otra partícula de forma instantánea, lo que contradice el sentido común.

File:O2 MolecularOrbitals Anim.gif

Animación que muestra dos átomos de oxígeno fusionándose para formar una molécula de O2 en su estado cuántico fundamental. Las nubes de color representan los orbitales atómicos. Los orbitales 2s y 2p de cada átomo se combinan para formar los orbitales σ y π de la molécula, que la mantienen unida. Los orbitales 1s, más interiores, no se combinan y permiten distinguir a cada núcleo. Lo que ocurre a escalas tan pequeñas es fascinante.

Si nos pudiéramos convertir en electrones, por ejemplo, sabríamos dónde y cómo estamos en cada momento y podríamos ver asombrados, todo lo que estaba ocurriendo a nuestro alrededor que, entonces sí, veríamos transcurrir a un ritmo más lento del que podemos detectar en los electrones desde nuestro macroestado espacio temporal. El electrón, bajo nuestro punto de vista se mueve alrededor del núcleo atómico a una velocidad de 7 millones de km/h.

A medida que se asciende en la escala de tamaños, hasta el tiempo se va ajustando a esta escala, los objetos, a medida que se hacen mayores se mueven más despacio y, además, tienen más duración que los pequeños objetos infinitesimales del micro mundo cuántico. La vida media de un neutron es de unos 15 minutos, por ejemplo, mientras que la vida media de una estrellas se puede contar en miles de millones de años.

En nuestra macroescala, los acontecimientos y ,los objetos se mueven a velocidades que a nosotros nos parecen normales. Si se mueven con demasiada lentitud nos parece que no se mueven. Así hablamos de escala de tiempo geológico, para referirnos al tiempo y velocidad de la mayor parte de los acontecimientos geológicos que afectan a la Tierra, el tiempo transcurre aquí en millones de años y nosotros ni lo apreciamos; nos parece que todo está inmóvil. Nosotros, los humanos, funcionamos en la escala de años (tiempo biológico).

El Tiempo Cosmológico es aún mucho más dilatado y los objetos cósmicos (mundos, estrellas y galaxias), tienen una mayor duración aunque su movimiento puede ser muy rápido debido a la inmensidad del espacio universal en el que se mueven. La Tierra, por ejemplo, orbita alrededor del Sol a una velocidad media de 30 Km/s., y, el Sol, se desplaza por la Galaxia a una velocidad de 270 km/s. Y, además, se puede incrementar el tiempo y el espacio en su andadura al estar inmersos y ligados en una misma maya elástica.

Así,  el espacio dentro de un átomo, es muy pequeño; dentro de una célula, es algo mayor; dentro de un animal, mayor aún y así sucesivamente… hasta llegar a los enormes espaciosa que separan las estrellas y las galaxias en el Universo.

Distancias astronómicas separan a las estrellas entre sí, a las galaxias dentro del cúmulo, y a los cúmulos en los supercúmulos.

Las distancias que separan a los objetos del Cosmos se tienen que medir con unidades espaciales, tal es su inmensa magnitud que, nuestras mentes, aunque podamos hablar de ellas de manera cotidiana, en realidad, no han llegado a asimilarlas.Y, a todo ésto, los físicos han intentado con denuedo elaborar una teoría completa de la gravedad que incluya la mecánica cuántica. Los cálculos de la mayoría de las teorías propuesta de la «gravedad cuántica» arrojan numerosos infinitos. Los físicos no están seguros si el problema es técnico o conceptual. No obstante, incluso prescindiendo de una teoría completa de gravedad cuántica, se puede deducir que los efectos de la teoría cuántica, habrían sido cruciales durante los primeros 10-43 segundos del inicio del universo, cuando éste tenía una densidad de 1093 gramos por centímetro cúbico y mayor. (El plomo sólido tiene una densidad de aproximadamente diez gramos por centímetro cúbico.)

Resultado de imagen de El Universo en la Era de Planck

Este período, que es el que corresponde a la era de Planck, y a su estudio se le llama cosmología cuántica. Como el universo en su totalidad habría estado sujeto a grandes incertidumbres y fluctuaciones durante la era de Planck o era cuántica, con la materia y la energía apareciendo y desapareciendo de un vacío en grandes cantidades, el concepto de un principio del universo podría no tener un significado bien definido. En todo caso, la densidad del universo durante este período es de tal magnitud que escapa a nuestra comprensión. Para propósitos prácticos, la era cuántica podría considerarse el estado inicial, o principio, del universo. En consecuencia, los procesos cuánticos ocurridos durante este período, cualquiera sea su naturaleza, determinaron las iniciales del universo.

gran-muralla-galaxias

Una cosa nos ha podido quedar clara: Los científicos para lograr conocer la estructura del universo a su escala más grande, deben retroceder en el tiempo, centrando sus teorías en el momento en que todo comenzó. Para ello, como  todos sabéis, se han formulado distintas teorías unificadoras de las cuatro fuerzas de la naturaleza, con las cuales se han modelado acontecimiento y en el universo primitivo casi a todo lo largo del camino hasta el principio. Pero cómo se supone que debió haber habido un «antes», aparece una barrera que impide ir más allá de una frontera que se halla fijada a los 10-43 [s] después del Big Bang, un instante conocido como «momento de Planck», en homenaje al físico alemán Max Planck.

Esta barrera existe debido a que antes del momento de Planck, durante el período llamado la «era de Planck o cuántica», se supone que las cuatro fuerza fundamentales conocidas de la naturaleza eran indistinguibles o se hallaban unificadas , que era una sola fuerza. Aunque los físicos han diseñado teorías cuánticas que unen tres de las fuerzas, una por una, a través de eras que se remontan al momento de Planck, hasta ahora les ha prácticamente imposible armonizar las leyes de la teoría cuántica con la gravedad de la relatividad de Einstein, en un sólo modelo teórico ampliamente convincente y con posibilidades claras de ser contrastado en experimentos de laboratorio y, mucho menos, con observaciones.

Y después de todo ésto, sólo una caso me queda clara: ¡Lo poco que sabemos! A pesar de la mucha imaginación que ponemos en las cosas que creemos conocer.

emilio silvera

¿Qué haríamos en un Universo sin fotones?

$
0
0

Resultado de imagen de foton particula elemental

Malentendido acerca del efecto fotoeléctrico  (1905)

Es frecuente asociar el carácter corpuscular de la radiación con la explicación einsteniana del efecto fotoeléctrico en 1905. Pero tal asociación requiere precisiones. El fenómeno fue detectado por H. Hertz, en 1887, como un fenómeno secundario en sus experimentos diseñados para confirmar la teoría de Maxwell. Ironías de la historia: tratando de asentar una teoría de naturaleza continua, como es la del campo electromagnético, Hertz proporcionó, sin sospecharlo, una base experimental para pensar en posibles aspectos discretos de la radiación. Es en 1905 cuando Einstein muestra la analogía formal existente entre un gas ideal monoatómico y la radiación del cuerpo negro, si se admite para ésta la ya entonces caduca ley de Wien. Un genuino análisis le lleva a la siguiente conclusión: la radiación de frecuencia v, siempre dentro del rango de validez de aquella ley, “se comporta termodinámicamente como si estuviera constituida por cuantos de energía, mutuamente independientes, de valor hv”,  donde h representa la constante de Planck. Con tal supuesto Einstein logra una explicación teórica de tres fenómenos que se resistían a ello: la regla de Stokes –la frecuencia de la emisión por luminiscencia resulta inferior  a la frecuencia incidente–, el efecto fotoeléctrico y la ionización de gases por luz ultravioleta. La anterior conclusión fue entendida por muchos –y lo sigue siendo– como la introducción de la naturaleza corpuscular de la radiación. Pero es obvio que, si Einstein así lo hubiera creído, no sólo lo habría destacado como se merecía, sino que el creador de la teoría de la relatividad habría tenido que asignar al cuanto un impulso de valor hv/c. Además, aunque el efecto fotoeléctrico se explicaba como un simple choque inelástico cuanto-electrón, Einstein tendría que haber considerado también el correspondiente choque-elástico, con lo que habría previsto la existencia del efecto Compton casi veinte años antes de su detección.

Rechazo generalizado

Imagen relacionadaImagen relacionada

Imagen relacionadaImagen relacionada

La tónica del impacto causado por la hipótesis cuántica de Einstein se manifiesta en el discurso que Planck pronuncia –¡en 1913!– ante la Academia Prusiana de Ciencias para presentar el nuevo académico: En suma, puede afirmarse que entre los problemas importantes, tan abundantes en la física moderna, difícilmente exista uno ante el que Einstein no adoptara una posición de forma notable. Que, a veces, errara el blanco en sus especulaciones, como por ejemplo en su hipótesis acerca del cuanto de la luz, no puede esgrimirse realmente demasiado en su contra. Porque sin correr un riesgo de vez en cuando es imposible, incluso en la ciencia natural de mayor exactitud, introducir verdaderas innovaciones. Cabe entender la prevención ante tal problemática hipótesis cuántica, en tanto los experimentos no se pronunciaran. Nada más lejos de la realidad. Milikan, que publicó en 1916 sendos artículos confirmando rigurosamente las previsiones teóricas einstenianas, remataba sus conclusiones así: “A pesar del éxito aparentemente completo de la ecuación de Einstein [para el efecto fotoeléctrico], la teoría física de la que estaba destinada a ser la expresión simbólica se ha encontrado tan insostenible que el mismo Einstein, creo, ya no la sostiene”. Hasta cierto punto, resulta comprensible el rotundo y prolongado rechazo de los cuantos de energía de Einstein; una osada hipótesis que parecía sugerir, cuando menos, la necesidad de una revisión profunda de la teoría del campo continuo de radiación. ¿A cambio de qué? De casi nada, dado que la carencia de resultados experimentales rigurosos en aquella época impedía la deseable comprobación de las predicciones einstenianas de 1905.

Un jugoso Gedankenexperiment

Imagen relacionadaImagen relacionada

Mostrar la compatibilidad entre los cuantos y el electromagnetismo maxwelliano representa un primer objetivo ineludible. Además de la dificultad de la tarea en sí, Einstein cuenta con la patente hostilidad de la mayoría de los líderes de la física del momento, para los cuales el comportamiento discreto de la energía de la radiación se da de bruces con el carácter continuo del campo electromagnético, al concebirlas como dos formas de comportamiento incompatibles, mutuamente excluyentes. En la reunión de la Sociedad Alemana de Científicos Naturales y Médicos de 1909, Einstein presenta una comunicación que Pauli no dudaría luego en calificar como “uno de los hitos en el desarrollo de la física teórica”. Einstein introduce aquí un fructífero Gedankenexperiment, al que volverá en 1917: un espejo se mueve libremente en la dirección perpendicular a su propio plano, reflejando totalmente la radiación comprendida en el intervalo de frecuencias (v, v + dv) y siendo transparente para el resto. El espejo se mueve en una cavidad que contiene un gas ideal monoatómico y radiación electromagnética; todo ello en equilibrio térmico, a la temperatura absoluta T. Las fluctuaciones en los choques irregulares de las moléculas de gas con el espejo implican, dada la situación de equilibrio, la existencia de fluctuaciones en la presión de la radiación. Su análisis, más intuitivo que riguroso, permite a Einstein obtener la siguiente expresión para la fluctuación de energía de la radiación:

donde h es la constante de Planck, p la densidad de energía de la radiación, c la velocidad de la luz en el vacío y V el volumen de la cavidad.

Einstein afirma que el primer sumando “recuerda” el carácter cuántico (discreto) de la radiación –al incluir la constante de Planck– mientras que asocia el segundo con un proceso de interferencias, que no concreta, entre ondas electromagnéticas. Ello le lleva a intuir en 1909, cuatro años antes de aparecer el modelo de Bohr, la necesidad de tener que incorporar, en una misma teoría, algún tipo de dualismo: “Es mi opinión, entonces, que la próxima fase del desarrollo de la física teórica nos aportará una teoría de la luz que pueda ser interpretada como una fusión de las teorías ondulatorias y de emisión [corpuscular]“.

El nacimiento del fotón

Resultado de imagen de El nacimiento del FotónResultado de imagen de El nacimiento del Fotón

Einstein firma, en 1917, la partida de nacimiento del fotón en un artículo que contiene dos resultados de gran calado: la deducción de la ley de Planck partiendo  de hipótesis cuánticas y la inferencia de la direccionalidad de los procesos elementales de emisión y absorción. Enarbolado con decisión de la navaja de Ockham se libera de resonadores y espejos. Tras comprobar que, partiendo de dos procesos elementales –emisión espontánea (EE) y absorción (A) –como responsables de la interacción materia-radiación, se llega ineludiblemente a la ya muy obsoleta ley de Wien, Einstein se apercibe de que la introducción de un tercer proceso –emisión inducida es precisamente el principio teórico que habría de regir la construcción del láser.

Ahora parte de un gas material, en equilibrio térmico con la radiación, en el que cada molécula adopta estados de un conjunto discreto, Z1, Z2, …, Zn,…, con energías respectivas E1, E2,…, En,…Las transiciones pueden darse hacia estados de energía mayor, absorbiéndola de la radiación, o hacia estados de energía menor, emitiendo la diferencia como energía radiante. Al no conocerse las leyes exactas que gobiernan estos procesos, Einstein introduce las “probabilidades de transición”, en un intervalo de tiempo d t:

La tasa de procesos inducidos por la presencia de radiación es proporcional a su densidad de energía y los “coeficientes de EinsteinA y B son característicos del apr de estados involucrados. Tras imponer la condición de equilibrio al sistema materia-radiación, Einstein deduce la ley de Planck, así como que en cualquier proceso elemental la cantidad de energía intercambiada entre materia y radiación de frecuencia v, venía dada por el mismo valor: hv. En principio, objetivo cumplido.

Resultado de imagen de El nacimiento del Fotón

La segunda parte del artículo, dedicada a un análisis crítico de sus premisas y conclusiones, es la importante para nuestra conmemoración. A tal fin Einstein vuelve a recurrir a las fluctuaciones, lo que no sorprende dada la alta estima en la que las tenía. Resultaría prolijo describir aquí el tratamiento, que esencialmente consiste en una rediscusión de su Gedankenexperiment de 1909, a la luz de los nuevos supuestos. Pero queremos destacar un resultado fundamental de su peculiar análisis, del que Einstein da cuenta a su amigo y confidente Michele Besso con estas palabras:

Esto [su nuevo tratamiento] conduce al resultado (que todavía no se encuentra en el trabajo que te he enviado) de que, cuando existe intercambio de energía elemental entre radiación y materia, se transfiere el impulso h v / c a la molécula. Se deduce que todo proceso elemental de esta naturaleza es un proceso enteramente orientado. Así, queda establecida la existencia de los cuantos de luz.

Si el intercambio de energía entre materia y radiación siempre va acompañado de una transferencia de impulso, cabe afirmar que en los procesos elementales se intercambian auténticas partículas y no meros cuantos de energía, como Einstein creía en 1905. En el caso de radiación monocromática de frecuencia v, estas partículas se mueven a la velocidad de la luz, tienen masa nula –de acuerdo a las prescripciones relativistas–, energía hv e impulso hv / c. En adelante escribiremos “fotones”, aunque el término tardaría diez años en acuñarse.

Una recepción hostil: la propuesta de BKS

A mediados de 1918 Einstein expresa a Besso estas cavilaciones:

He reflexionado durante un número incalculable de horas sobre la cuestión de los cuantos, naturalmente sin hacer verdaderos progresos. Pero ya no dudo en absoluto de la realidad de los cuantos de radiación, si bien aún soy casi el único con este convencimiento.

Surgen algunos interrogantes razonables. ¿Qué razones había para que los físicos no compartieran las convicciones de Einstein? ¿Por qué continuaba éste interesado en el problema de los fotones, si consideraba que ya había probado su existencia?

Resultado de imagen de Teoría ondulatoria y corpuscular del Fotón

                           Carácter ondulatorio y corpuscular de la luz

Insistimos en que la razón de peso para el rechazo del fotón era la admitida incompatibilidad entre la teoría maxwelliana (ondulatoria) y la nueva teoría cuántica (corpuscular). Pero es que, además, para una gran mayoría de los físicos del momento, las fluctuaciones –centrales en la justificación einsteniana– no pasaban de ser puro academicismo. Para ellos, resultaba inconcebible pensar en un posible desmantelamiento de la teoría del campo electromagnético –por entonces contrastada y admitida–, apoyándose básicamente en un análisis de las fluctuaciones estadísticas.

Es frecuente ver escrito que el fotón se instaló en la física en 1923, tras la explicación teórica del “efecto Compton”. Dicha explicación parecía confirmar simultáneamente dos resultados, por entonces aún en entredicho: la realidad de los fotones y la validez de la relatividad especial, que se empleaba en el análisis del choque elástico fotón-electrón libre. Pero la historia no ocurrió exactamente así, como lo prueba la publicación de un renombrado artículo firmado en 1924 por Bohr, Kramers y Slater –posteriormente conocido por las siglas BKS–, en el que se rechaza sin ambigüedad el fotón de Einstein y los consiguientes supuestos. Los autores asumen que, según el dictamen experimental, las discontinuidades cuánticas resultan ya ineludibles, pero que ello no implica la necesidad de la explicación einsteniana. De otra forma: los experimentos no conducen inexorablemente al fotón.

Resultado de imagen de Saltos cuánticosResultado de imagen de Saltos cuánticos

Precisamente el objetivo de BKS es hacer compatibles los saltos cuánticos con la descripción maxwelliana. A tal fin, la interacción materia-radiación se describe en términos de interferencias entre campos electromagnéticos, ya sean éstos reales o virtuales. El que dichas interferencias den lugar a fenómenos de absorción o emisión de radiación sólo se puede describir en términos probabilísticos análogos –según los autores– a los empleados por Einstein.

Tras reconocer que la causalidad clásica estricta resulta incompatible con la propuesta BKS, sus autores llegan a una osada conclusión: en un proceso individual de emisión o absorción, descrito sobre la base de aquellos campos virtuales, los principios de conservación de la energía y del momento dejan de ser universalmente válidos. Sólo gozan de validez estadística: se cumplen para valores medios en un número de procesos muy elevado.

En 1925, Bothe y Geiger sometieron a test experimental una de las extrañas implicaciones de BKS: la violación del principio de causalidad. Comprobaron que el electrón secundario del efecto Compton se crea en el instante mismo del impacto fotón-electrón, como exige la causalidad clásica, y no tras el tiempo medible predicho por BKS, al requerir esta teoría unas supuestas interferencias entre campos. Casi simultáneamente, Compton y Simon diseñaron un experimento diferente –ahora empleando una cámara de niebla–, que confirmaba la conservación de energía en los procesos individuales.

Epílogo

Resultado de imagen de Einstein como la misma propuesta BKS

Las aspiraciones de Einstein no se colman con la introducción del fotón, al no verse capaz de reconciliarlo con el continuo del campo electromagnético. Pero, en nuestra opinión, hay otra razón de peso para su insatisfacción: el papel que la probabilidad comienza a jugar a partir de sus propias investigaciones, y de otras posteriores, como la misma propuesta BKS. Parece vislumbrar que la probabilidad puede llegar a jugar en la física un papel esencial para entender el comportamiento del mundo físico, sin limitarse a ser un mero recurso matemático, como sucede en mecánica estadística.

Si la falta de información sobre el “cuándo” y el “cómo” –de la emisión espontanea, por ejemplo– se toma como un defecto de la teoría, lo procedente sería de esperar hasta que apareciese una explicación más completa. Pero si realmente se había llegado a la teoría más afinada posible sobre el comportamiento de la radiación, el papel que en ella desempeña la probabilidad lleva a la negación del determinismo clásico. El dilema es fuerte y Einstein opta desde un principio por la primera opción: piensa que su incipiente teoría cuántica, son teorías provisionalmente válidas, pero no definitivas, por incompletas.

Ante el protagonismo que la probabilidad podía adquirir en el futuro de la física, Einstein manifiesta así su inquietud a la esposa de Born:

Imagen relacionada

La opinión de Bohr sobre la radiación es de gran interés. Pero no desearía verme forzado a renunciar a la causalidad estricta sin defenderla con la mayor intensidad que lo he hecho hasta ahora. Me resulta completamente intolerable la idea de que un electrón expuesto a radiación pueda escoger según su propio libre albedrío, no sólo el momento para saltar, sino también la dirección. Si este fuera el caso, preferiría haber sido zapatero remendón, o incluso empleado de un casino, antes que físico.

El desacuerdo con Bohr que Einstein apunta aquí se mantendría ya de por vida. Subsistiría incluso después de la formulación de la mecánica cuántica (la matricial por Heisenberg en 1925 y la ondulatoria por Schrödinger en 1926) y de la electrodinámica cuántica (por Dirac en 1927); las disciplinas que proporcionan la solución vigente a los problemas que venimos exponiendo. La discrepancia entre ambos acerca de la interpretación del formalismo cuántico nunca desapareció. Hay quien piensa que esta confrontación, aunque centrada en el nacimiento del fotón y la contrapuesta BKS, representa el auténtico punto de partida del renombrado y fructífero “debate Bohr-Einstein”. Pero eso es harina de otro costal…

Autor: Luis Navarro Veguillas

Revista de la Real Sociedad Española de Física

Volumen 31. Número 2. 2017

¿Universo de más dimensiones? ¿Dónde?

$
0
0

Oskar Klein.jpg

                T. Kaluza                                   Oskar Benjamin Klein

Las dimensiones mas altas fueron introducidas en una teoría unificada por primera vez en 1919, en Alemania, por Theodor Kaluza. Kaluza le escribió a Einstein sugiriéndole que su sueño de hallar una teoría unificada de la fuerza de gravitación y el electromagnetismo podía realizarse si elaboraba sus ecuaciones en un espaciotiempo de cinco dimensiones. Einstein al principio se burlo de la idea,  mas tarde, pensando y estudiando la sugerencia con mas frialdad y examen mas profundo, lo reconsideró y ayudo a Kaluza a que pudiera publicar su articulo.

Pocos años mas tarde, el físico sueco Oskar Klein publico una version del  de Kaluza que lo mejoraba dejando un diseño matemático mas fino, de mas calidad y que explicaba de manera mas contundente lo que la teor

ia quería significar al elevar la teoría a cinco dimensiones y lograr unificar la gravedad con el magnetismo. Desde entonces, la teoría es conocida como de Kaluza-Klein y, aunque parecía muy interesante, en realidad nadie sabia que  con ella hasta los años setenta, cuando resulto beneficioso trabajar en la supersimetria.

Resultado de imagen de partículas supersimétricas

                                                                             Hipotéticas partículas supersimétricas

En la física de partículas, la supersimetría es una simetría hipotética que podría relacionar las propiedades de los bosones y los fermiones. La supersimetría también es conocida por el acrónimo inglés SUSY.

Aunque todavía no se ha verificado experimentalmente que la supersimetría sea una simetría de la naturaleza, reviste interés teórico porque la supersimetría puede resolver diversos problemas teóricos como el problema de la jerarquía, además de ofrecer candidatos adicionales para explicar la “materia oscura”.

Resultado de imagen de Teoría Supersimetría


La supersimetría es parte fundamental de muchos modelos teóricos, entre ellos la teoría de supercuerdas, que generaliza a la teoría de cuerdas. Recientes mediciones sobre las colisiones en el LHC no han dado pistas sobre la existencia de las partículas predichas por la supersimetría lo que resulta ser un gran golpe a la teoría.

Pronto Kaluza-Klein estuvo en los labios de todo el mundo (los físicos mas destacados del hablaron de esa teoría). Aunque la teoría de cuerdas en particular y la supersimetría en general apelaban a mas dimensiones, las cuerdas tenían un modo de seleccionar su dimensionalidad requerida. Pronto se hizo evidente que la teoría de cuerdas solo seria eficaz en, diez, once y veintiséis dimensiones, y solo invocaba dos posibles grupos de simetría: SO(32) o E8 x E8. Cuando una teoría apunta  algo tan tajantemente, los científicos prestan atención, y a finales de los años ochenta había muchos físicos que trabajaban en “las cuerdas”.

Resultado de imagen de El MOdelo Estándar

                               El Modelo estándar se nos quedó pequeño, iremos más lejos

La cuerda es cuántica y gravitatoria, de sus entrañas surge,  por arte de magia, la partícula mensajera de la fuerza de gravedad: el gravitón. Funde de  natural las dos teorías físicas más poderosas de que disponemos, la mecánica cuántica y la relatividad general, y  se convierte en supercuerda (con mayores grados de libertad) es capaz de describir bosones y fermiones, partículas de fuerza y de materia. La simple vibración de una cuerda infinitesimal podría unificar todas la fuerzas y partículas fundamentales.

Resultado de imagen de el espaciotiempo está hecho de supercuerdas

“Como te puedes imaginar, estas dimensiones son muy muy pequeñas, de hecho tienen la longitud de planck. Por eso nunca vamos a poder medirlas en la vida real. Pero las cuerdas, que también son muy muy pequeñas (de hecho algunas hasta tienen la longitud de planck), tienen la opción de vibrar en nuestras 3 dimensiones espaciales, o pueden vibrar en estas 6 dimensiones arrolladas (prefiero usar el término arrolladas que circulares, ya que los espacios de Calabi-Yau no son circulares en lo absoluto).

El simple hecho de que las cuerdas puedan vibrar en 9 dimensiones (3 largas y 6 arrolladas) es lo que hizo que las ecuaciones de la teoría de cuerdas fueran capaces de explicar todas las 4 fuerzas fundamentales. La ventaja de tener una teoría unificada, es que en vez de usar montones de ecuaciones diferentes, los físicos ahora sólo pueden usar las ecuaciones de la teoría de cuerdas, y ya está.”

 

universo

 

“El gif nos muestra el espacio de Kalabi-Yau en todo su esplendor. Tan sólo muestra 3 dimensiones de este, y es imposible ilustrar más de 3 dimensiones. Pero recuerda que todos los espacios de Calabi-Yau tienen 6 dimensiones, las cuales pueden estar ubicadas de diferentes maneras. En otras palabras, no existe una forma específica de como es un espacio de Calabi-Yau, ya que podemos agrupar 6 dimensiones de infinitas maneras diferentes. “

 

Parece que todo está hecho de cuerdas, incluso el espacio y el tiempo podrían emerger de las relaciones, más o menos complejas,  cuerdas vibrantes. La materia-materia, que tocamos y nos parece tan sólida y compacta, ya sabíamos que está conformada por grandes espacios vacíos, pero no imaginábamos que era tan sutil como una cuerda de energía vibrando. Los átomos, las galaxias, los agujeros negros, todo son marañas de cuerdas y supercuerdas vibrando en diez u once dimensiones espaciotemporales.

Resultado de imagen de el espaciotiempo está hecho de supercuerdas

Lo cierto es que, andamos un poco perdidos y no pocos físicos (no saben -si de forma interesada-), insisten una y otra vez, en cuestiones que parecen no llevar a ninguna parte y que, según las imposibilidades que nos presentan esos caminos, ¿no sería conveniente elegir otros derroteros para indagar nuevas físicas mientras tanto?, para dejar que avanzasen las tecnologías, se adquieran más potentes y nuevas formas de energías que nos puedan permitir llegar a sondear las cuerdas y poder vislumbrar si es cierto, que puedan existir esas cuerdas vibrantes que, con sus resonancias crean las partículas y la materia.

Resultado de imagen de el espaciotiempo está hecho de supercuerdas

Nos queda mucho  poder oír las vibraciones de esas “cuerdas” que la física trata de encontrar, y, mientras tanto, oiremos vibrar esas otras que nos ofrece el violín en las manos expertos del músico con experiencia. Mientras tanto, esas otras cuerdas cuya existencia intuimos y soñamos, si es cierto que están ahí, seguirán silenciosas vibrando y creando materia a partir de esa ínfima sustancia que no hemos podido observar… ¡por el momento!

Quedaba mucho y duro trabajo por hacer, pero las perspectivas eran brillantes. y, de entre todos ellos, los mas destacados fueron Schwarz y sus colaboradores en supercuerdas Green y Edward Witten. Ellos fueron los artífices de un gran periodo de aventura intelectual que desembocó en la más moderna versión de la teoría de cuerdas que elaboro E. Witten con el  de Teoría M. Esta teoría de más altas dimensiones nos ha llevado a una enorme profundidad matemática en el campo de la topología y, desde luego, ha dejado un panorama muy optimista en el horizonte.

Tal optimismo,  luego, podría ser equivocado, ya que, de momento, solo contamos con el aparato teórico de la teoría y su verificación experimental se nos escapa al requerir disponer de la energía de Planck de 1019 GeV para comprobarla y, de momento, dicha energía  fuera del alcance humano.

La teoria de supercuerdas y sus 11 dimensiones

                                     Como nadie las ha podido ver, las imaginamos de mil maneras

Einstein, como todos sabeis, dedico buena  de la segunda mitad de su vida a intentar hallar una teoría de campo unificada de la gravitación y el electromagnetismo, con expectativas populares tan altas que las ecuaciones de su labor en marcha eran expuestas en escaparates a lo largo de la Quinta Avenida de Nueva York, donde eran escudriñadas por multitud de curiosos que no las entendían. En aquel tiempo, Einstein desconocía que las matemáticas precisas  desarrollar una teoria asi, aun no existían. De ahí su fracaso en el intento. Él paradójicamente, había ignorado los principios cuánticos, a pesar de haber sido uno de los padres de la teoría.

, retomemos las cuerdas. Los críticos del concepto de supercuerda señalaron que las afirmaciones sobre sus posibilidades se basaban casi enteramente en su belleza interna. La teoría no había siquiera repetido los logros del Modelo Estándar, ni había hecho ni una sola predicción que pudiera someterse a prueba mediante experimentos. Una teoría así, más que teoría era una gran conjetura a la que le quedaba mucho camino por andar.

              Hemos podido ver otras muchas cosas …, ni fotinos ni selectrones han aparecido nunca

 puedo admirar la imagen de un púlsar o un magnetar, me siento transportado a regiones lejanas del espacio en las que, ese magnetar o magnetoestrella (que es una estrella de neutrones alimentada con un campo magnético extremadamente fuerte y, simplemente se trata de una variedad de púlsar cuya característica principal es la expulsión, en un breve período -equivalente a la duración de un relámpago-, de enormes cantidades de alta energía en  de rayos X y rayos gamma. ), ha surgido a partir de una estrella masiva y se ha conformado  un extraño objeto exótico que nos produce sorpresa y admiración al ver como, a partir de una cosa totalmente diferente, por medio de transiciones de fase de diversa índole, se llega a formar otro objeto totalmente distinto del que fue.

¿Estamos perdidos y hablamos de fotinos,  squarks, etc. Estas partículas que son predichas por las teorías que unifican todas las fuerzas de la naturaleza. Forman un conjunto de contrapartidas de las partículas a las que estamos habituados y que nos son bien conocidas. Se nombran en analogía a sus compañeras : el squars es el compañero supersimétrico del quark, el fotino del fotón, etc. Las más ligeras de estas partículas ¿podrían ser la materia oscura?. Si es así, cada partícula probablemente pesaría al menos cuarenta veces más que un protón.

La supersimetría ordenaba que el Universo debía contener familias enteras de nuevas partículas, entre ellas “selectrones” (equivalente supersimétrico del electrón) y “fotinos” (equivalentes del fotón), pero no especificaba las masas hipotéticas de tales partículas. La ausencia de pruebas aducidas en búsquedas preliminares de partículas supersimétricas, como las realizadas en el acelerador PEP de Stanford y el PETRA de Hamburgo, por lo tanto no probaban nada; siempre se poda imaginar que las partículas eran demasiado masivas para ser producidas en esas maquinas y habría que esperar a otras mas adelantadas del futuro que, como  el LHC, nos pueda sacar a la luz, algunas de esas partículas supersimétricas que confirmarían la teoría.

                ¡Fotinos y selectrones! ¿Dónde? El LHC con sus 14 TeV ha llegado (según nos cuentan) al Bosón de Higgs pero… ¡cuerdas! No aparecen esas partículas supersimétricas y, la teoría, se tambalea.

Resultado de imagen de La teoría M

La Teoria M que antes mencionaba, es una version mas adelantada, en 11 dimensiones, nos ha dejado un cuadro que ilusiona y,  luego, si finalmente se puede verificar lo que predice, estaríamos ante una teoría cuántica de la gravedad y, desde luego, nos explicaría el Universo como nunca antes se pudo hacer. Claro que, nosotros, pobres mortales e ignorantes, nos seguimos haciendo las mismas preguntas:

¿Donde, pues, hemos de buscar ese universo hiperdimensional de la simetría perfecta? El mundo en el que vivimos esta lleno de simetrías rotas, y solo tiene cuatro dimensiones. La respuesta llega de la Cosmología, la cual nos dice que el universo supersimétrico, si existió, pertenece al pasado. La implicación de esto es que el universo empezó en un  de perfección simétrica, del que evoluciono al universo menos simétrico en el que vivimos. Si es así, la búsqueda de la simetría perfecta es la búsqueda del secreto del origen del universo, y la atención de sus acólitos puede, volverse con buenas razones, como las caras de las flores al alba, hacia la blanca luz de la génesis cósmica.

¡Nos queda tanto por saber!

emilio silvera

A vueltas con la Física

$
0
0

¡La Física!

Resultado de imagen de Artículo de ocho páginas de Max Planck que puso la semilla de la mecánica cuántica

Un día de 1.900, se publicó un artículo de ocho páginas que sentaron las bases de la Mecánica Cuántica. Su autor, Max Planck, cambió conceptos clásicos para traernos una nueva visión del universo infinitesimal (10 con exponente -35 m.)a una distancia conocida como límite de Planck donde los Quarks están confinados en tripletes formando protones y neutrones y la fuerza nuclear fuerte tiene su dominio y se deja sentir a través de los bosones portadores, los Gluones.

Resultado de imagen de El cuanto de acción h

Planck, nos habló del “cuanto” de acción h, y nos dijo que la energía se transmite en paquetes de manera discontinua. Aquello, asombró al mundo y el mismo Planck fue consciente de que, sus creencias sobre la Física, a partir de ese momento, serían otras.

Resultado de imagen de El efecto fotoeléctrico

Inspirado en el trabajo de Planck, Albert Einstein desarrollo un trabajo sobre el “Efecto Fotoeléctrico ” – que le valió el Nobel de Física de 1.921 – y, contribuyó de manera activa al desarrollo de la Mecánica Cuántica que, más tarde, combatió.

Resultado de imagen de principio de incertidumbre de heisenberg

Principio de Incertidumbre

Resultado de imagen de Función de onda de Schrödinger

Función de onda de Schrödinger

Resultado de imagen de Función de onda de Schrödinger

Resultado de imagen de Ecuación de Dirac

Ecuación de Dirac

Resultado de imagen de Gráficos de FeynmanResultado de imagen de Gráficos de FeynmanResultado de imagen de Gráficos de FeynmanResultado de imagen de Gráficos de Feynman

Los famosos gráficos de Feynmann

Llegaron nuevos Físicos como Werner Heisenberg, Schrödinger, Dirac, Feynman y otros que, desarrollaron lo que hoy conocemos como Mecánica Cuántica. Heisenberg con su Principio de Incertidumbre nos demostró que no podíamos saberlo todo al mismo tiempo. Si queremos conocer la situación de un electrón y para ello utilizamos un microscopio electrónico, el mismo hecho de su utilización transformará el medio observado, ya que, los fotones enviados por el microscopio cambiarán la dirección de dicho electrón. De esta manera, podemos saber dónde está, pero no sabremos a donde se dirige.

Resultado de imagen de La función de onda de Schrödinger

Schrödinger, con su función de onda, nos dio una buena herramienta para buscar la partícula mediante un sistema de alta probabilidad de su situación.

La Mecánica Cuántica ha alcanzado unas cotas increíbles de consistencia y experimentalmente, es una de las teorías más acreditadas. Sin embargo, mi parecer es que siendo una herramienta muy útil para los Físicos, no es la definitiva, en un futuro próximo tendremos muchas sorpresas de la mano del LHC que en este mismo año nos dará alguna alegría importante para el mundo de la Física.

Resultado de imagen de Postulados de la Relatividad EspecialResultado de imagen de Postulados de la Relatividad EspecialResultado de imagen de Postulados de la Relatividad EspecialResultado de imagen de Postulados de la Relatividad Especial

El otro gran pilar en el que se apoya la Física, se llama Relatividad Especial. Todos sabéis lo que fue para la Física el año 1.905. Esa primera parte de la teoría relativista de Einstein, nos legó conocimientos muy importantes, tales como que un objeto viajando a velocidades cercanas a la de la luz aumenta su masa o que el hipotético viajero de una nave espacial que viaje a ésas velocidades relativistas, habrá conseguido ralentizar su tiempo. El tiempo pasa más lento cuando la velocidad es grande. Y, el otro logro importante que fue resumido en la ecuación más famosa de la historia de la Física, fue el hecho de descubrir que la masa y la energía son dos aspectos de la misma cosa. E=mc2 ¡cuánta belleza y profundidad expresado en tan poco espacio!

La Humanidad ha conseguido logros increíbles en el campo de la Física, siempre acompañada de las matemáticas, han llegado a dejar al descubierto cuestiones misteriosas y muy bien escondidas en lo más profundo de la materia y de las fuerzas fundamentales que interaccionan con ella.

Ahora nos podemos plantear preguntas que nadie sabe contestar e incluso algunas que no sabemos ni plantear, nos faltan conocimientos para hacer tales preguntas. Sin embargo, en el futuro, las respuestas llegaran.

Resultado de imagen de Pitágoras

¿Cómo podría haber preguntado Pitágoras por el significado de  m=E/c2 (E=mc2), si Einstein nació más de 2.000 años más tarde?

De la misma manera estamos hoy haciendo preguntas o formulando teorías que no pueden ser contestadas o comprobadas. La energía de Planck (10 con exponente 19 GeV) nos vendría muy bien para poder comprobar la teoría M que ha unificado todas las teorías existentes sobre la teoría de cuerdas. Sin embargo, nuestra civilización actual no tiene la posibilidad de alcanzar dicha energía y habrá que esperar mucho tiempo para que eso sea posible.

Resultado de imagen de Las teorías de cuerdas

No podemos dejar por ello de continuar de trabajar en ese campo de las cuerdas, es prometedor e ilusionante, allí, en las más altas dimensiones, parece que es posible hermanar a la Mecánica Cuántica y a la Relatividad General. Esta teoría nos promete por fin una teoría cuántica de la gravedad.

Puede parecer ciencia ficción hablar y exponer hechos y conceptos que no pueden ser demostrados, sin embargo, Einstein esperó largos años con su teoría de la Relatividad General bien asentada en su cabeza, sin poder exponerla al mundo por no tener las matemáticas necesarias para ello, y, cuando su amigo Marcel Grossman, al que había pedido ayuda, le envió algunos documentos entre los que se encontraba la famosa Conferencia de Riemann, Einstein quedó paralizado ante el Tensor Métrico de Riemann, allí tenía la herramienta que estaba buscando y que le permitía formular de manera precisa los espacios curvados de la relatividad general.

Resultado de imagen de Las matemáticas de la teoría MResultado de imagen de Las matemáticas de la teoría MResultado de imagen de Las matemáticas de la teoría M

De la misma manera, un día, alguien surgirá y nos traerá las matemáticas necesarias para que, la teoría M se pueda exponer de manera clara y completa. ¿Serán las funciones modulares de Ramanujan las que nos sacará del atolladero? Todos sabéis que las matemáticas topológicas de la Teoría M, son extremadamente difíciles, pocos tienen acceso a ellas, y, de momento, parece que nadie está en posesión de los conocimientos matemáticos que se precisan  ¿Que dice Perelman al respecto?

Tendremos que esperar un poco.

Resultado de imagen de La curiosidad es la madre del saber

Como nuestra curiosidad es inagotable, nos empuja a preguntar, trabajar, estudiar, investigar y profundizar en todas estas cuestiones que atrae a todos aquellos que, como yo, enamorados de la Física, saben que, algún día lejano en el futuro, nuestra Civilización alcanzará el nivel requerido para poder abrir esas puertas que ahora tenemos cerradas y de las que no tenemos las llaves para poder abrirlas. Encima de estas puertas, los letreros dicen: Teoría M, Materia Oscura, Densidad Crítica, Universos paralelos, Viajes en el Tiempo, Singularidades, etc.

Me gustaría estar presente cuando pasados algunos siglos, nuestra especie tenga como fuente de energía inagotable la que generan los Agujeros Negros. Esa energía nos dará la posibilidad de viajar a las estrellas y de llegar al fondo de la teoría M.

Pero no corramos tanto. Pensemos en cuestiones más cercanas y con posibilidades, como la localización del Bosón de Higgs. Pero, ¿Que es el campo de Higgs? ¿Y, el Bosón de Higgs?

Resultado de imagen de El Bosón de Higgs

Estamos preguntando por el campo de fuerzas y energías donde se generan las partículas llamadas bosones de Higgs que, hipotéticamente proporciona masa a todas las demás partículas y se encuentran en este campo virtual o de vacío que aún nadie ha podido encontrar. Por eso la puesta en marcha del LHC en el CERN (Ginebra), ¡nos produce tanta ilusión! Allí pueden estar las repuestas a todas esas preguntas aun no contestadas.

Todo lo grande está hecho de cosas pequeñas.

Resultado de imagen de Una galaxiaResultado de imagen de átomos

 Todos los objetos son átomos hechos de Quarks y Leptones

Así es. Al menos hasta donde sabemos, los planetas, las estrellas y Galaxias y demás objetos estelares (nosotros también), están hechos de infinitesimales objetos: Quarks y Leptones. Todo lo que podemos ver en el Universo está hecho de materia bariónica, existe otra clase de materia que aún no sabemos lo que es, dónde está o como se genera y de qué está hecha (esa que nuestra ignorancia denomina Materia Oscura).

¡Nuestra imaginación! algo que solo puede ser comparada con la grandiosidad del Universo que… es casi tan grande como ella.

La Mecánica Cuántica.

La Relatividad Especial y la Relatividad General.

El Modelo Estándar.

Las fuerzas Fundamentales.

Las Constantes Universales.

Las familias de partículas: Quarks (u, d, s, c, t, b), Hadrónes (bariones y mesones), los  Leptones (electrón, muón, tau y sus respectivos neutrinos).

La Teoría M y antes la de Supersimetría, Supergravedead, la de cuerdas, la cuerda heterótica.

En su día la teoría de Kaluza-Klein (la primera de más altas dimensiones)

Resultado de imagen de Teorías de la Física

Y, de esta manera podríamos continuar exponiendo ejemplos enormes de la imaginación que poseemos y que es el don que la humanidad tiene para descubrir los misterios del Universo. Einstein llamaba a esto hacer ejercicios mentales. Está bien que nuestras mentes no tengan barreras a la hora de imaginar. Creo que, a excepción de las imposibilidades y barreras impuestas por nuestro físico, todo lo demás, con el tiempo podrá ser posible.

Alguien dijo que Genio es aquel que es capaz de plasmar en realidad sus pensamientos. Pues, amigos, en la Física han sido muchos los genios que han aportado su imaginación.

Resultado de imagen de Teorías de la Física

La física está presente en todas partes

La pregunta que hay que responder aquí es lo que se entiende por Física. Por mi parte, Física es todo lo que aquí he dejado escrito y muchísimo más. Creo firmemente que la Física es el arma más poderosa con la que cuenta la Humanidad para resolver todos los problemas que tiene planteados a plazo fijo en el futuro lejano.

¿Habéis pensado alguna vez que el Sol tiene una cantidad de combustible nuclear – hidrógeno – limitado? El día que se acabe, dentro de 4.000 millones de años ¿dónde iremos?

La pregunta parece tonta, sin embargo, no lo es. No debemos descansar en el avance del saber científico de la Física y las matemáticas (además de en los otros campos), ya que, en ese no parar estará la solución a todos nuestros problemas presentes y futuros, y, la llave que abrirá la puerta principal, se llama Física (siempre acompañada por la llave maestra de las matemáticas).

emilio silvera

Viewing all 959 articles
Browse latest View live